簡易檢索 / 詳目顯示

研究生: 阮懷南
Nguyen Hoai Nam
論文名稱: 校園網路惡意無線網路基地台之定位
Locating Rogue Access Points in a Campus Network
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 王瑞堂
Jui-Tang Wang
馮輝文
Huei-Wen Ferng
許騰尹
Terng-Yin Hsu
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 81
中文關鍵詞: 流氓接入點室內定位校園網絡WiFi 定位
外文關鍵詞: Rogue Access Points, Indoor Localization, Campus Network, WiFi Positioning
相關次數: 點閱:269下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 校園 WiFi 網絡可能會受到干擾訪問點(AP)或惡意 AP 的損害。 WiFi 定位在定位和消除上述 AP 類型的威脅中發揮著重要作用。在這個 論文中,我們開發了一個名為 CWMS 的校園 WiFi 管理系統。該系統使 用在校園部署的 WiFi 控制器的數據,並通過 WISE-PaaS 在 Web 儀表 板中呈現。CWMS 包括 WiFi 定位,用於定位校園網絡中的 AP 位置。 WiFi 定位採用了一種通過 AP 位置調整實現低變異性定位的方法,以及 一種校準路徑損耗指數的方法,以更好地描述室內環境。

    在國立臺灣科技大學(NTUST)的伊陽(IY)大樓進行的 WiFi 定位 現場測試檢測到十二個干擾和可疑的惡意 AP,而無需樓層預測不準確。 初始估算實現了檢測到的 AP 的平均距離誤差為 4.11 米。應用路徑損耗 指數校準方法後,平均距離誤差降低到 3.85 米。


    The campus WiFi network can be damaged by interfering access points (APs) or rogue APs. WiFi positioning plays an important role in locating and eliminating threats from the above AP types. In this thesis, we develop a campus WiFi management system, named CWMS. This system uses data from WiFi controllers deployed on campus, and is presented in a Web dashboard using WISE-PaaS. CWMS includes WiFi positioning, which locates the AP locations in the campus network. The WiFi positioning employs a method for low variance positioning through AP location adjustment and a method to calibrate the path loss exponent in order to better characterize the indoor environment.

    The WiFi positioning field testing in the Yi-Yang (IY) building at the National Taiwan University of Science and Technology (NTUST) detected twelve interfering and suspected-rogue APs, without inaccuracy in floor prediction. The initial estimation achieved a mean distance error of 4.11 meters for the detected APs. After applying the path loss exponent calibration method, the mean distance error is reduced to 3.85 meters.

    Contents Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . ii Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Campus WiFi Management System . . . . . . . . . . . . 1 1.2 Indoor WiFi Positioning . . . . . . . . . . . . . . . . . . 2 1.3 Rogue APs and Interfering APs . . . . . . . . . . . . . . . 5 1.4 NTUST Campus Network Deployment . . . . . . . . . . . 6 2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Simplified Log-distance Path Loss Model . . . . . . . . . 8 2.2 Trilateration Algorithm . . . . . . . . . . . . . . . . . . . 10 2.3 Least Squares Algorithm . . . . . . . . . . . . . . . . . . 12 3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Accessing and Extracting Data . . . . . . . . . . . . . . . 17 4.2 Database and Storage . . . . . . . . . . . . . . . . . . . . 19 4.3 WiFi Positioning Flowchart . . . . . . . . . . . . . . . . . 25 4.4 Data Preparation for WiFi Positioning . . . . . . . . . . . 27 4.5 AP Location Adjustment . . . . . . . . . . . . . . . . . . 29 4.6 Path Loss Exponent Calibration . . . . . . . . . . . . . . 31 4.6.1 Problem . . . . . . . . . . . . . . . . . . . . . . . 31 4.6.2 Parameters Definition . . . . . . . . . . . . . . . 31 4.6.3 Equations . . . . . . . . . . . . . . . . . . . . . . 32 4.6.4 Algorithms . . . . . . . . . . . . . . . . . . . . . 34 4.7 Data Visualization with WISE-PaaS . . . . . . . . . . . . 40 4.7.1 Data Visualization for WiFi Positioning . . . . . . 41 5 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Floor Prediction . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 2-D and 3-D Mean Distance Error . . . . . . . . . . . . . 57 5.3 AP Location Adjustment . . . . . . . . . . . . . . . . . . 59 5.4 Path Loss Exponent Calibration . . . . . . . . . . . . . . 62 5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . 67 5.6 Web Visualization . . . . . . . . . . . . . . . . . . . . . . 69 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    References
    [1] K. Liang, “Research on thin ap architecture to deploy campus wlan,” in 2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing, pp. 192–195, 2011.
    [2] “Why channels 1, 6 and 11?.” https://www.metageek.com/training/resources/why-channels-1-6-11/.
    [3] C.-K. Tsung, C.-T. Yang, J.-C. Liu, C. Hsiung, S.-K. Chang, and M.-S. Hsu, “On construction of
    precise positioning system via ieee 802.11ax,” IEEE Internet of Things Journal, no. 1, pp. 1–1, 2023.
    [4] “ARUBA ANALYTICS AND LOCATION ENGINE.” https://www.arubanetworks.com/assets/ds/
    DS_ALE.pdf.
    [5] X. Wang, L. Wang, B. Yu, and G. Dong, “Studies on network management system framework of
    campus network,” in 2010 2nd International Asia Conference on Informatics in Control, Automation
    and Robotics (CAR 2010), vol. 2, pp. 285–289, 2010.
    [6] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,”
    IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.
    [7] D. N. Fernández, “Implementation of a wifi-based indoor location system on a mobile device for a
    university area,” in 2019 IEEE XXVI International Conference on Electronics, Electrical Engineering
    and Computing (INTERCON), pp. 1–4, 2019.
    [8] J. Luomala and I. Hakala, “Analysis and evaluation of adaptive rssi-based ranging in outdoor wireless
    sensor networks,” Ad Hoc Networks, vol. 87, pp. 100–112, 2019.
    [9] A. Nessa, B. Adhikari, F. Hussain, and X. N. Fernando, “A survey of machine learning for indoor
    positioning,” IEEE Access, vol. 8, pp. 214945–214965, 2020.
    [10] J. Messer, “Rogue Access Points.” https:// www.professormesser.com/ network-plus/ n10-007/ n10-
    007-training-course/.
    [11] B. Pinto, R. Barreto, E. Souto, and H. Oliveira, “Robust rssi-based indoor positioning system using kmeans clustering and bayesian estimation,” IEEE Sensors Journal, vol. 21, no. 21, pp. 24462–24470,
    2021.
    [12] “ARUBA 7200 SERIES MOBILITY CONTROLLERS.” https:// www.securewirelessworks.com/
    datasheets/DS_7200Series.pdf.
    [13] C.-W. Tseng, “Implementation of an open wifi data analysis platform,” Master’s thesis, National Taiwan University of Science and Technology, Taipei City, 2022.
    [14] A. Goldsmith, Wireless Communications. Cambridge Core, Cambridge University Press, 2005.
    [15] B. Yang, L. Guo, R. Guo, M. Zhao, and T. Zhao, “A novel trilateration algorithm for rssi-based indoor
    localization,” IEEE Sensors Journal, vol. 20, no. 14, pp. 8164–8172, 2020
    [16] S. F, G. H. Su W, Wang Q, and F. Q. A, “A location estimation algorithm based on rssi vector similarity
    degree,” International Journal of Distributed Sensor Networks, 2014.
    [17] “Log-distance path loss model.” https://en.wikipedia.org/wiki/Log-distance_path_loss_model.
    [18] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice. 01
    2011.
    [19] F. S. Anton Carlsson, Filip Golander, “User configurable indoor positioning system using wifi trilateration and fingerprinting,” 06 2017.
    [20] T. Dag and T. Arsan, “Received signal strength based least squares lateration algorithm for indoor
    localization,” Computers & Electrical Engineering, vol. 66, pp. 114–126, 2018.
    [21] A. E. Redondi, M. Cesana, D. M. Weibel, and E. Fitzgerald, “Understanding the wifi usage of university students,” in 2016 International Wireless Communications and Mobile Computing Conference
    (IWCMC), pp. 44–49, 2016.
    [22] N. Salman, Y. J. Guo, A. H. Kemp, and M. Ghogho, “Analysis of linear least square solution for rss
    based localization,” in 2012 International Symposium on Communications and Information Technologies (ISCIT), pp. 1051–1054, 2012.
    [23] H. Kavalionak, M. Tosato, P. Barsocchi, and F. M. Nardini, “Dynamic wi-fi rssi normalization in
    unmapped locations.,” in EDBT/ICDT Workshops, 2020.
    [24] W. Xue, W. Qiu, X. Hua, and K. Yu, “Improved wi-fi rssi measurement for indoor localization,” IEEE
    Sensors Journal, vol. 17, no. 7, pp. 2224–2230, 2017.
    [25] G. Mao, B. D. O. Anderson, and B. Fidan, “Wsn06-4: Online calibration of path loss exponent in
    wireless sensor networks,” in IEEE Globecom 2006, pp. 1–6, 2006.
    [26] “Showcommand API.” https://developer.arubanetworks.com/aruba-aos/docs/showcommand-api.
    [27] “show ap monitor ap-list, The CLI Bank - Aruba Networks.” https://www.arubanetworks.com/techdocs/CLI-Bank/Content/aos8/sh-ap-mon-list.htm.
    [28] D. Z. Abidin, S. Nurmaini, R. Firsandava Malik, Erwin, E. Rasywir, and Y. Pratama, “Rssi data preparation for machine learning,” in 2020 International Conference on Informatics, Multimedia, Cyber and
    Information System (ICIMCIS), pp. 284–289, 2020.
    [29] B. Pinto, R. Barreto, E. Souto, and H. Oliveira, “Robust rssi-based indoor positioning system using kmeans clustering and bayesian estimation,” IEEE Sensors Journal, vol. 21, no. 21, pp. 24462–24470,
    2021.
    [30] “Gradient Descent + MSE from Scratch.” https://www.kaggle.com/code/vagifa/gradient-descent-msefrom-scratch.
    [31] “SciPy documentation, minimize(method=’Nelder-Mead’).”
    [32] “WISE-PaaS Industrial IoT Platform.” https://wise-paas.advantech.com/en-us/marketplace/solutions/
    wise-paas.
    [33] T. S. Rappaport, Wireless Communications: Principles and Practice. 1995.
    [34] “Path loss.” https://en.wikipedia.org/wiki/Path_loss.
    [35] “Potential Issues.” https:// www.arubanetworks.com/ techdocs/ ArubaOS_64_Web_Help/ Content/
    ArubaFrameStyles/Dashboard_Monitoring/Potential_Issues.htm.
    [36] I. Dolińska, M. Jakubowski, and A. Masiukiewicz, “Interference comparison in wi-fi 2.4 ghz and 5 ghz
    bands,” in 2017 International Conference on Information and Digital Technologies (IDT), pp. 106–
    112, 2017.

    QR CODE