簡易檢索 / 詳目顯示

研究生: 吳柏頤
PO-I WU
論文名稱: 開發奈米結構之聚(3,4-乙烯二氧噻吩)系有機電化學電晶體於 癌細胞胞外泌體之分離與檢測
Development of nanostructured poly(3,4-ethylenedioxythiophene)-based organic electrochemical transistors for isolation and detection of cancer cell-derived exosomes
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 蕭育生
Yu-Sheng Hsiao
邱南福
Nan-Fu Chiu
游佳欣
Jia-Shing Yu
賴志遠
James Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 導電高分子聚乙基二氧噻吩有機電化學電晶體胞外泌體有機生物電子介面
外文關鍵詞: Conductive Polymers, Polyethylene Dioxythiophene, Organic Electrochemical Transistors, Exosomes, Organic Bioelectronic Interfaces
相關次數: 點閱:423下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此次論文主要探討的內容以胞外泌體為主,並透過有機電化學電晶體(OECT)、電化學電聚合、及黃光為影等技術,來完成生物晶片的整合,並達到生物電子感測的目的,以導電高分子系作為材料,並利用電化學電聚合的方式做出三維結構之生物電子薄膜介面,使用其薄膜捕獲胞外泌體(Exosome),因為上述電化學電聚合法可成功製備在OECT的主動層通道上,我們後續利用OECT作為感測元件對胞外泌體進行生物感測效能之探討。本實驗將分成以下步驟進行;(i)首先優化指叉式電極結構利用黃光微影的方式做出以玻璃為基板且金作為電極之指叉式電極晶片,並設計不一樣的通道線寬以優化OECT之跨導率(Transconductance)和開關效應(ON/OFF ratio);(ii)將含有羧酸官能基之乙基二氧噻吩單體(EDOT-Ac)使用電化學電聚合的方式形成高分子薄膜於指叉式電極上,以調控溫度來形成薄膜表面奈米管柱結構;(iii)表面修飾晶片使用聚(L-賴氨酸)-接枝-聚(乙二醇)-生物素(PLL-g-PEG-biotin),並結合鏈黴親和素(Streptavidin, SA)及上皮細胞黏附分子(Anti-EpCAM)對特定胞外泌體進行捕獲;(iv)以電化學電聚合造成的形貌差異改善胞外泌體捕獲效率,再以奈米粒子追蹤分析儀(NTA)計算其捕獲效率;(v)為了佐證捕獲帶來的影響,再利用跨導率(Transconductance)、循環伏安法(CV)、電化學阻抗譜(EIS)等方式來了解胞外泌體在生物電子中的特性,因為在胞外泌體對於生物電子中的研究尚不廣泛,作為新興生物電子的感測目標物,期許在未來能夠將此生物電子技術應用到臨床診斷及治療上。


The main content of this paper is exosomes, and the integration of biochips is completed through organic electrochemical transistors (OECT), electrochemical electropolymerization, and yellow light filming and other technologies to achieve bioelectronics. The purpose of sensing is to use the conductive polymer system as the material, and use the electrochemical electropolymerization method to make a three-dimensional structure of the bioelectronic film interface, and use the film to capture the exosomes (Exosome), because the above electrochemical electropolymerization method It can be successfully prepared on the active layer channel of OECT. We will use OECT as a sensing element to explore the biosensing efficiency of exosomes. This experiment will be divided into the following steps: (i) First, optimize the structure of the interdigitated electrode to make an interdigitated electrode wafer with glass as the substrate and gold as the electrode by yellow light lithography, and design different channel line widths to optimize Transconductance and ON/OFF ratio of OECT; (ii) The ethyldioxythiophene monomer (EDOT-Ac) containing a carboxylic acid functional group is formed into a polymer by electrochemical electropolymerization The thin film was deposited on the interdigitated electrode, and the temperature was controlled to form the nanotube column structure on the surface of the thin film; (iii) the surface modification wafer used poly(L-lysine)-graft-poly(ethylene glycol)-biotin ( PLL-g-PEG-biotin), combined with streptavidin (SA) and epithelial cell adhesion molecule (Anti-EpCAM) to capture specific exosomes; The difference in morphology improves the capture efficiency of exosomes, and the capture efficiency is calculated by nanoparticle tracking analyzer (NTA). (CV), electrochemical impedance spectroscopy (EIS) and other methods to understand the characteristics of exosomes in bioelectronics, because the research on exosomes in bioelectronics is not yet extensive, as a sensing target for emerging bioelectronics It is expected that this bioelectronic technology can be applied to clinical diagnosis and treatment in the future.

謝誌 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1-1 緒論 1 1-2 胞外泌體 2 1-3 有機生物電子 4 1-4 有機電化學電晶體簡介 5 1-5 研究動機與目的 6 第二章 原理與文獻回顧 9 2-1 胞外泌體的分離法文獻回顧 9 2-2 胞外泌體的感測文獻回顧 11 2-3 導電高分子 14 2-4 材料特性 18 2-5 電化學電聚合原理 19 2-6 PEDOT的形態學控制文獻回顧 22 2-7 胞外泌體之萃取法 25 2-8 胞外泌體之保存及偵測法 28 2-9 奈米結構抓取/釋放法 30 2-10 有機電化學電晶體操作原理 33 第三章 設計與實驗方法 36 3-1 實驗流程 36 3-2 細胞培養 38 3-3 胞外泌體 41 3-4 實驗儀器 43 3-5 實驗材料 51 3-6 實驗方法 52 第四章 結果與討論 58 4-1 PEDOT材料分析 58 4-2 PEDOT奈米結構於胞外泌體之捕捉與釋放 74 4-3 有機電化學電晶體(OECT) 77 4-4 胞外泌體於OECT元件捕獲表現 84 4-5 OECT胞外泌體濃度電訊號差異 89 第五章 結論 92 參考文獻 93

1 Al-Kuraishy, H. M., & Al-Gareeb, A. I. (2016). Erectile dysfunction and low sex drive in men with type 2 DM: The potential role of diabetic pharmacotherapy. Journal of clinical and diagnostic research: JCDR, 10(12), FC21.
2 Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193-208..
3 Breitbach, S., Tug, S., & Simon, P. (2012). Circulating cell-free DNA. Sports medicine, 42(7), 565-586.
4 Piñeiro, R. (2020). Introduction–Biology of Breast Cancer Metastasis and Importance of the Analysis of CTCs. Circulating Tumor Cells in Breast Cancer Metastatic Disease, 1-10.
5 Allenson, K., Castillo, J., San Lucas, F. A., Scelo, G., Kim, D. U., Bernard, V., ... & Alvarez, H. (2017). High prevalence of mutantKRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Annals of Oncology, 28(4), 741-747.
6 Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., & Li, P. (2020). Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International journal of nanomedicine, 15, 6917.
7 De Palma, F. D. E., Luglio, G., Tropeano, F. P., Pagano, G., D’Armiento, M., Kroemer, G., ... & De Palma, G. D. (2020). The role of micro-RNAs and circulating tumor markers as predictors of response to neoadjuvant therapy in locally advanced rectal cancer. International journal of molecular sciences, 21(19), 7040.
8 Kaiser, C. A., & Schekman, R. (1990). Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell, 61(4), 723-733.
9 Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., & Rothman, J. E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362(6418), 318-324.
10 Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R., & Südhof, T. C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature, 345(6272), 260-263.
11 Li, X., Corbett, A. L., Taatizadeh, E., Tasnim, N., Little, J. P., Garnis, C., ... & Li, I. T. (2019). Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL bioengineering, 3(1), 011503.
12 Berggren, M., & Richter‐Dahlfors, A. (2007). Organic bioelectronics. Advanced Materials, 19(20), 3201-3213.
13 Ferber, D. (1999). Risks and benefits: GM crops in the cross hairs. Science, 286(5445), 1662-1666.
14 Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., & Berggren, M. (2002). Bi‐stable and dynamic current modulation in electrochemical organic transistors. Advanced Materials, 14(1), 51-54.
15 Yoshioka, Y., & Jabbour, G. E. (2006). Inkjet printing of oxidants for patterning of nanometer‐thick conducting polymer electrodes. Advanced Materials, 18(10), 1307-1312.
16 Yang, B., Chen, Y., & Shi, J. (2019). Exosome biochemistry and advanced nanotechnology for next‐generation theranostic platforms. Advanced materials, 31(2), 1802896.
17 Kergoat, L., Piro, B., Berggren, M., Horowitz, G., & Pham, M. C. (2012). Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and bioanalytical chemistry, 402(5), 1813-1826.
18 White, H. S., Kittlesen, G. P., & Wrighton, M. S. (1984). Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. Journal of the American Chemical Society, 106(18), 5375-5377.
19 Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L. H., ... & Malliaras, G. G. (2013). High transconductance organic electrochemical transistors. Nature communications, 4(1), 1-6.
20 Gualandi, I., Tonelli, D., Mariani, F., Scavetta, E., Marzocchi, M., & Fraboni, B. (2016). Selective detection of dopamine with an all PEDOT: PSS organic electrochemical transistor. Scientific reports, 6(1), 1-10.
21 Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. Ca Cancer J Clin, 71(1), 7-33.
22 衛生福利部. 109年國人死因統計結果, <https://www.mohw.gov.tw/cp-5017-61533-1.html>
23 Skog, J., Würdinger, T., Van Rijn, S., Meijer, D. H., Gainche, L., Curry, W. T., ... & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology, 10(12), 1470-1476.
24 Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-383.
25 Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., & Simpson, R. J. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56(2), 293-304..
26 Zhang, Z., Wang, C., Li, T., Liu, Z., & Li, L. (2014). Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line derived exosomes. Oncology letters, 8(4), 1701-1706.
27 Zeringer, E., Barta, T., Li, M., & Vlassov, A. V. (2015). Strategies for isolation of exosomes. Cold Spring Harbor Protocols, 2015(4), pdb-top074476.
28 Kanwar, S. S., Dunlay, C. J., Simeone, D. M., & Nagrath, S. (2014). Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab on a Chip, 14(11), 1891-1900.
29 Zhao, Z., Yang, Y., Zeng, Y., & He, M. (2016). A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab on a Chip, 16(3), 489-496.
30 Lee, K., Shao, H., Weissleder, R., & Lee, H. (2015). Acoustic purification of extracellular microvesicles. ACS nano, 9(3), 2321-2327.
31 Vaidyanathan, R., Naghibosadat, M., Rauf, S., Korbie, D., Carrascosa, L. G., Shiddiky, M. J., & Trau, M. (2014). Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Analytical chemistry, 86(22), 11125-11132.
32 Vaidyanathan, R., Rauf, S., Shiddiky, M. J., & Trau, M. (2014). Tuneable surface shear forces to physically displace nonspecific molecules in protein biomarker detection. Biosensors and Bioelectronics, 61, 184-191.
33 Azmi, A. S., Bao, B., & Sarkar, F. H. (2013). Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews, 32(3), 623-642.
34 Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., ... & Kalluri, R. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177-182.
35 Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., & Giebel, B. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy B Biointerfaces.
36 Van Der Pol, E., Hoekstra, A. G., Sturk, A., Otto, C., Van Leeuwen, T. G., & Nieuwland, R. (2010). Optical and non‐optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 8(12), 2596-2607.
37 Nolte, E. N., van der Vlist, E. J., Aalberts, M., Mertens, H. C., Bosch, B. J., Bartelink, W., ... & Wauben, M. H. (2012). Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 712-720.
38 Zhang, P., He, M., & Zeng, Y. (2016). Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab on a Chip, 16(16), 3033-3042.
39 Wang, S., Zhang, L., Wan, S., Cansiz, S., Cui, C., Liu, Y., ... & Tan, W. (2017). Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS nano, 11(4), 3943-3949..
40 Im, H., Shao, H., Park, Y. I., Peterson, V. M., Castro, C. M., Weissleder, R., & Lee, H. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature biotechnology, 32(5), 490-495.
41 Mao, S., Chang, J., Pu, H., Lu, G., He, Q., Zhang, H., & Chen, J. (2017). Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 46(22), 6872-6904.
42 Theodoraki, M. N., Yerneni, S. S., Hoffmann, T. K., Gooding, W. E., & Whiteside, T. L. (2018). Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer PatientsPD-L1+ Exosomes in Plasma of HNC Patients. Clinical cancer research, 24(4), 896-905.
43 Boriachek, K., Islam, M. N., Gopalan, V., Lam, A. K., Nguyen, N. T., & Shiddiky, M. J. (2017). Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst, 142(12), 2211-2219.
44 Yu, Y., Li, Y. T., Jin, D., Yang, F., Wu, D., Xiao, M. M., ... & Zhang, G. J. (2019). Electrical and label-free quantification of exosomes with a reduced graphene oxide field effect transistor biosensor. Analytical chemistry, 91(16), 10679-10686..
45 Xie, H., Li, Y. T., Lei, Y. M., Liu, Y. L., Xiao, M. M., Gao, C., ... & Zhang, G. J. (2016). Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Analytical chemistry, 88(22), 11115-11122.
46 Doldán, X., Fagúndez, P., Cayota, A., Laíz, J., & Tosar, J. P. (2016). Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification. Analytical chemistry, 88(21), 10466-10473.
47 Dong, H., Chen, H., Jiang, J., Zhang, H., Cai, C., & Shen, Q. (2018). Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Analytical chemistry, 90(7), 4507-4513.
48 Zhou, Q., Rahimian, A., Son, K., Shin, D. S., Patel, T., & Revzin, A. (2016). Development of an aptasensor for electrochemical detection of exosomes. Methods, 97, 88-93.
49 Daaboul, G. G., Gagni, P., Benussi, L., Bettotti, P., Ciani, M., Cretich, M., ... & Chiari, M. (2016). Digital detection of exosomes by interferometric imaging. Scientific reports, 6(1), 1-10.
50 Staudinger, H. E. R. M. A. N. N. (1953). Macromolecular chemistry. Nobel Lecture, 397-419.
51 Rasmussen, S. C. (2018). 2000 Nobel Prize in Chemistry. In Acetylene and Its Polymers (pp. 125-132). Springer, Cham.
52 Snook, G. A., Kao, P., & Best, A. S. (2011). Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 196(1), 1-12.
53 Lieberth, K., Romele, P., Torricelli, F., Koutsouras, D. A., Brückner, M., Mailänder, V., ... & Blom, P. W. (2021). Current‐Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity. Advanced Healthcare Materials, 10(19), 2100845.
54 Donahue, M. J., Sanchez-Sanchez, A., Inal, S., Qu, J., Owens, R. M., Mecerreyes, D., ... & Martin, D. C. (2020). Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering: R: Reports, 140, 100546.
55 Gao, N., Yu, J., Tian, Q., Shi, J., Zhang, M., Chen, S., & Zang, L. (2021). Application of PEDOT: PSS and its composites in electrochemical and electronic chemosensors. Chemosensors, 9(4), 79.
56 Mengistie, D. A., Chen, C. H., Boopathi, K. M., Pranoto, F. W., Li, L. J., & Chu, C. W. (2015). Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS applied materials & interfaces, 7(1), 94-100.
57 Sekine, J., Luo, S. C., Wang, S., Zhu, B., Tseng, H. R., & Yu, H. H. (2011). Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures. Advanced Materials, 23(41), 4788-4792.
58 Lee, S., & Gleason, K. K. (2015). Enhanced optical property with tunable band gap of cross‐linked PEDOT copolymers via oxidative chemical vapor deposition. Advanced Functional Materials, 25(1), 85-93.
59 Berggren, M., & Malliaras, G. G. (2019). How conducting polymer electrodes operate. Science, 364(6437), 233-234.
60 Luo, S. C., Sekine, J., Zhu, B., Zhao, H., Nakao, A., & Yu, H. H. (2012). Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization. Acs Nano, 6(4), 3018-3026.
61 Lin, Y. F., Li, C. T., & Ho, K. C. (2016). A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. Journal of Materials Chemistry A, 4(2), 384-394.
62 Cho, S. I., & Lee, S. B. (2008). Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Accounts of chemical research, 41(6), 699-707.
63 Xiao, R., Cho, S. I., Liu, R., & Lee, S. B. (2007). Controlled electrochemical synthesis of conductive polymer nanotube structures. Journal of the American Chemical Society, 129(14), 4483-4489.
64 Darmanin, T., Godeau, G., Guittard, F., Klimareva, E. L., Schewtschenko, I., & Perepichka, I. F. (2018). A Templateless Electropolymerization Approach to Porous Hydrophobic Nanostructures Using 3, 4‐Phenylenedioxythiophene Monomers with Electron‐Withdrawing Groups. ChemNanoMat, 4(7), 656-662.
65 Ludwig, A. K., De Miroschedji, K., Doeppner, T. R., Börger, V., Ruesing, J., Rebmann, V., ... & Giebel, B. (2018). Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of extracellular vesicles, 7(1), 1528109.
66 Cvjetkovic, A., Lötvall, J., & Lässer, C. (2014). The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of extracellular vesicles, 3(1), 23111.
67 Böing, A. N., Van Der Pol, E., Grootemaat, A. E., Coumans, F. A., Sturk, A., & Nieuwland, R. (2014). Single-step isolation of extracellular vesicles by size-exclusion chromatography. Journal of extracellular vesicles, 3(1), 23430.
68 Rider, M. A., Hurwitz, S. N., & Meckes, D. G. (2016). ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific reports, 6(1), 1-14.
69 Wunsch, B. H., Smith, J. T., Gifford, S. M., Wang, C., Brink, M., Bruce, R. L., ... & Astier, Y. (2016). Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nature nanotechnology, 11(11), 936-940.
70 Mathivanan, S., Lim, J. W., Tauro, B. J., Ji, H., Moritz, R. L., & Simpson, R. J. (2010). Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Molecular & cellular proteomics, 9(2), 197-208.
71 Ryu, K. J., Lee, J. Y., Park, C., Cho, D., & Kim, S. J. (2020). Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation. Annals of laboratory medicine, 40(3), 253-258.
72 Wu, Y., Deng, W., & Klinke II, D. J. (2015). Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst, 140(19), 6631-6642.
73 Charoenviriyakul, C., Takahashi, Y., Nishikawa, M., & Takakura, Y. (2018). Preservation of exosomes at room temperature using lyophilization. International Journal of Pharmaceutics, 553(1-2), 1-7.
74 Maas, S. L., De Vrij, J., Van Der Vlist, E. J., Geragousian, B., Van Bloois, L., Mastrobattista, E., ... & Nolte, E. N. (2015). Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 200, 87-96.
75 Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., ... & Jovanovic‐Talisman, T. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles, 7(1), 1535750.
76 Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R., & Lee, H. (2018). New technologies for analysis of extracellular vesicles. Chemical reviews, 118(4), 1917-1950.
77 Andreu, Z., & Yáñez-Mó, M. (2014). Tetraspanins in extracellular vesicle formation and function. Frontiers in immunology, 5, 442.
78 Runz, S., Keller, S., Rupp, C., Stoeck, A., Issa, Y., Koensgen, D., ... & Altevogt, P. (2007). Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecologic oncology, 107(3), 563-571.
79 Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & bioscience, 9(1), 1-18.
80 Lee, Y., El Andaloussi, S., & Wood, M. J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human molecular genetics, 21(R1), R125-R134.
81 Lv, X., Geng, Z., Su, Y., Fan, Z., Wang, S., Fang, W., & Chen, H. (2019). Label-free exosome detection based on a low-cost plasmonic biosensor array integrated with microfluidics. Langmuir, 35(30), 9816-9824.
82 Ruiz-Taylor, L. A., Martin, T. L., Zaugg, F. G., Witte, K., Indermuhle, P., Nock, S., & Wagner, P. (2001). Monolayers of derivatized poly (L-lysine)-grafted poly (ethylene glycol) on metal oxides as a class of biomolecular interfaces. Proceedings of the National Academy of Sciences, 98(3), 852-857.
83 Hsiao, Y. S., Ho, B. C., Yan, H. X., Kuo, C. W., Chueh, D. Y., Yu, H. H., & Chen, P. (2015). Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. Journal of Materials Chemistry B, 3(25), 5103-5110.
84 Stavrinidou, E., Leleux, P., Rajaona, H., Khodagholy, D., Rivnay, J., Lindau, M., ... & Malliaras, G. G. (2013). Direct measurement of ion mobility in a conducting polymer. Advanced Materials, 25(32), 4488-4493.
85 Rivnay, J., Leleux, P., Sessolo, M., Khodagholy, D., Hervé, T., Fiocchi, M., & Malliaras, G. G. (2013). Organic electrochemical transistors with maximum transconductance at zero gate bias. Advanced Materials, 25(48), 7010-7014.
86 Nishinaka, M., Jinno, H., Jimbo, Y., Lee, S., Wang, J., Lee, W., ... & Someya, T. (2021). High‐Transconductance Organic Electrochemical Transistor Fabricated on Ultrathin Films Using Spray Coating. Small Structures, 2(3), 2000088.
87 Zainal, M. F., & Mohd, Y. (2015). Characterization of PEDOT films for electrochromic applications. Polymer-Plastics Technology and Engineering, 54(3), 276-281.
88 Piro, B., Mattana, G., Zrig, S., Anquetin, G., Battaglini, N., Capitao, D., ... & Reisberg, S. (2018). Fabrication and use of organic electrochemical transistors for sensing of metabolites in aqueous media. Applied Sciences, 8(6), 928.
89 Heinze, J., Frontana-Uribe, B. A., & Ludwigs, S. (2010). Electrochemistry of Conducting Polymers Persistent Models and New Concepts. Chemical Reviews, 110(8), 4724-4771.

無法下載圖示 全文公開日期 2032/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE