簡易檢索 / 詳目顯示

研究生: 若海依
Jo Hai I
論文名稱: 利⽤微波提升半導體⾼分⼦型態與電晶體特性
Enhanced charge-transporting behavior for solutionprocessable organic transistor through microwave impetus
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 陳志堅
Jyh-Chien Chen
王建隆
Chien-Lung Wang
莊偉綜
Wei-Tsung Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 96
中文關鍵詞: 半導體⾼分⼦共軛⾼分⼦微波輻射薄膜型態垂直式電晶體電荷載⼦遷移率
外文關鍵詞: Semi-conductive Polymer, Conjugated Polymer, Microwave Irradiation, Thin Film Morphology, Vertical Transistor, Charge Carrier Mobility
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ⾃1977 年,⽩川英樹、Alan G. MacDiarmid 和Alan J.Heeger 發現碘蒸氣摻雜於聚⼄炔當中可以提升導電率後,開啟了有機材料應⽤於電⼦元件的研究領域。利⽤有機材料具有可撓性質,1994 年Francis Garnier 實現如紙的電⼦元件。然⽽有機材料本⾝半結晶結構卻⼤⼤限制了載⼦遷移,⽽影響其電性的關鍵問題,近⼗年科學家已從物理或化學的⾯向解決此問題,但技術⾨檻及製程複雜性過⾼,使其限制了⼤規模製程,難以商業化。
    有鑑於此,此研究以溶液經由微波輻射進⾏⾼效率的⾼分⼦型態改變之⾓度切⼊開發更有效且簡易的⽅法控制共軛⾼分⼦聚集,優化其結構型態、提升其元件性能並探討物理機制,再進⼀步使⽤不同半導體⾼分⼦作為有機薄膜電晶體之
    半導體層證實應⽤廣度。全新的概念⽤來提升半導體⾼分⼦的載⼦遷移率,未來亦可結合噴墨技術縮短製程時間且調控薄膜型態。研究之兩⼤⽅向如下:(1) 利⽤溶液經微波輻射提升多種共軛⾼分⼦之有機場效應電晶體(OFET)的載⼦遷移率(2) 分析聚合物於溶液中聚集型態及薄膜結構型態對於電性之影響。整體研究中不僅開發新穎⽅法調控溶液中⾼分⼦型態以優化元件性能,並且探討薄膜微結構與載⼦遷移之關聯,極具科學研究價值。


    In 1977, chemists, Hideki Shirakawa, Alan G. MacDiarmid and Alan J. Heeger, observed and reported the treatment of polyacetylene with halides was collectively referred to as “chemical doping” which increased the conductivity more than ten to nine times, given the growing interest in organic material in electronic application. Based on the flexible property of organic material, Francis Garnier came up with paper printed electronic in 1994. At the same time the electronic devices using the conjugated polymer as a semi-conductive layer also have been facing a serve problem that their semi-crystalline nature limited the charge carrier mobility, causing the very limited device performance. Over the past few decades, scientists have devoted to developing the new method to solve the crucial problem from the physical or chemical side, but still making the poor possibility of commercializing due to the required complicated processes and limited the large-area processes.
    In the light of this, this proposed project aims to develop a more efficient and simpler method called microwave irradiation base on the view point of molecular rotation and flash-heating to control the aggregation of conjugated polymer in solution, realize the practical applications of semi-conductive polymer, and proposed their corresponding physical mechanism. Moreover, using different type of conjugated polymer in attempt to have the powerful evidence of the universality of this method.The strategy of utilizing microwave irradiation to control the morphology of thin film
    is a novel concept and also has potential to combine with inkjet printing process to shorten the time of process. Two major following issues are explored in the research:(1) Using the microwave irradiation to enhance the charge carrier mobility of organic thin film transistor. (2) Build an in-situ optical system to analyze the variation of the polymer chain under microwave irradiation and understand the interplay between the microstructure and electric properties.
    The whole research not only develop a new method to control the aggregation of
    polymer adjusting the electrical performance but also has the scientific value on
    polymer physics and semiconductor science.

    Abstract .......................................................................................................................... i 中文摘要 ...................................................................................................................... iv Contents ........................................................................................................................ vi Table Captions ............................................................................................................. vii Figure Captions .......................................................................................................... viii Chapter 1 Introduction ................................................................................................. 14 1.1. Organic semiconductor .......................................................................... 1 1.2. Basic concepts of organic field-effect transistors (OFETs) ................... 3 1.2.1. Device structure and characterization of OFETs ........................... 3 1.2.2. Electron-transporting and hole-transporting materials ................... 7 1.3. Literature review .................................................................................. 12 1.3.1. Molecular conformation for controlled π−π stacking .................. 13 1.3.2. Post-thermal treatment process .................................................... 15 1.3.3. Enhanced molecular ordering in solution ..................................... 15 1.4. Motivation and research objectives ...................................................... 17 1.4.1. The mechanism of microwave heating ......................................... 18 1.4.2. The concept of research design.. .................................................. 23 Chapter 2 Experimental section ................................................................................... 24 2.1. Materials ............................................................................................... 24 2.2. Device fabrication and device structure ............................................... 25 2.3. Characterization ................................................................................... 27 2.3.1. Electronical properties .................................................................. 27 2.3.2. UV-Vis spectraphotometer ........................................................... 27 2.3.3. In-situ UV-Vis / Fluorescence spectraphotometer ........................ 28 2.3.4. Atomic force microscopy (AFM) ................................................. 30 2.3.5. Grazing incident X-ray diffraction (GIXRD) ............................... 31 2.3.6. p-Polarixed multiple-angle incidence resolution spectrometry (PMAIRs) ..................................................................................................... 33 Chapter 3 Reasearch discussion ................................................................................... 35 3.1. Introduction .......................................................................................... 35 3.2. OFET electrical characteristics ............................................................ 37 3.2.1. Carrier mobility calculation of p-type semiconductor ................. 37 3.2.2. Carrier mobility calculation of n-type semiconductor ................. 41 3.3. Optical result ........................................................................................ 44 3.3.1. Thin-film analysis using UV-Vis/ photoluminescence (PL) spectrophoyometry ..................................................................................... 44 3.3.2. In-situ optical analysis of solution during microwave ................. 47 3.3.3. A comparison of good solvent and poor solvent .......................... 58 3.4. Morphology .......................................................................................... 61 3.4.1. Atomic force microscopy (AFM) ............................................... 61 3.4.2. X-ray diffraction (XRD) to investigate the packing ..................... 66 3.4.3. The relative degree of crystallinity (rDOC) ................................. 69 3.4.4. The characteristic chain orientation of thin film .......................... 70 Chapter 4 Conclusion and Future Work ....................................................................... 76 References .................................................................................................................... 78

    [1] C. Reese, Z. Bao, Mater. Today 2007, 10, 20.
    [2] Y.Chen, J. Au, P. Kazlas, A. Ritenour, H Gate, M. McCreary, Nature 2003, 423, 136.
    [3] A. Dodabalapur, Mater. Today 2006, 9, 24.
    [4] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Dellofre, B. Servet, S. Ries, P.
    Alnot, J. Am. Chem. Soc. 1993, 115, 8716.
    [5] M.Wittmer, J. R.Noser and H.Melchior, J. Appl. Phys. 54, 1423 (1983).
    [6] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
    [7] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw-
    Hill Higher Education, 1996.
    [8] Lin,Y.-Y; Gundlach, D. J.; Nelson, S. F.; Jckson, T. N. IEEE Elect. Device Lett.
    1996,18 606.
    [9] Y. Guo, G. Yu, Y. Liu, Adv. Mater. 2010, 22, 4427.
    [10] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.‐L. Brédas, P. C.
    Ewbank, K.R. Mann, Chem. Mater. 2004, 16, 4436;
    [11] J. Lee, S. Cho, J. H. Seo, P. Anant, J. Jacob, C. Yang, J. Mater. Chem. 2012, 22.
    [12] R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F.
    Toney, A. Salleo, Nat. Mater. 2013,12, 1038.
    [13] S. Malik, A. K. Nanti, J. Polym. Sci, Part B Polym. Phys. 2002, 40, 2073.
    [14] S. Y. Son, Y. Kim, J. Lee, G.‐Y. Lee, W.‐T. Park, Y.‐Y. Noh, C. E. Park, T. Park, J.
    Am. Chem. Soc. 2016, 138, 8096.
    [15] S. Cho, K. Lee, J. Yuen, G. M. Wang, D. Moses, A. J. Heeger, M. Surin, R.
    Lazzaroni, J. Appl. Phys. 2006, 100, 114503.
    [16] M. chang, J. Lee, N. Kleinhenz, B. Fu, E. Reichmanis, Adv. Funct. Mater. 2014,
    24, 4457
    [17] M. Chang, D. Choi, B. Fu, E. Reichmanis, ACS Nano 2013, 5402.
    [18] A. R. Aiyar, J. Hong, R. Nambiar, D. M. Collard, E. Reichmanis, Adv. Funct.
    Mater. 2011, 21, 2652.
    [19] J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M. J. Ko, D. H. Choi, B.
    Kim, J. H. Cho, Chem. Mater. 2012, 24, 1316.
    [20] B. C. Schroeder, T. Kurosawa, T. Fu, Y.‐C. Chiu, J. Mun, G.‐J. N. Wang, X. Gu, L.
    Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, Z. Bao, Adv. Funct.
    Mater. 2017, 27, 1701973.
    [21] T. Kim, J. Lee, and K.‐H. Lee, Carbon Lett., 15 15 (2014).
    [22] X. Shang, H. Yu, W. Choi, E.K. Lee, J.H. Oh Org. Electron., 30 (2016), pp. 207-
    212
    [23] C.‐J. Ko, Y.‐K. Lin, F.‐C. Chen, Adv. Mater. 2007, 19, 3520.
    [24] I. K. Lee, K. H. Lee, W. J. Cho, ACS Appl. Mater. Intertfaces 2014,6, 22680.
    [25] Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, Z. A. Bao, J. Am.
    Chem. Soc. 2009, 131, 9396.
    [26] M. L. Tang, T. Okamoto, Z. Bao, J. Am. Chem. Soc. 2006, 128, 16002
    [27] M.-H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128,
    12851.
    [28] F. Panzer, H. Bässler, A. Köhler, J. Phys. Chem. Lett. 2017, 8, 114.
    [29] E. Fujiwara, H. Fukudome, K. Takizawa, R. Ishige, S. Ando, J. Phys. Chem.
    B 2018, 122, 8985.
    [30] H.E. Katz, J. Johnson, A.J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787.
    [31] G. Binnig, C.E Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [32] Ishige, R.; Tanaka, K.; Ando, S. Macromol. Chem. Phys. 2018, 219, 1700370.
    [33] T. Hasegawa, J. Phys. Chem. B 2002, 106, 4112–4115.
    [34] W. Y. Lee, G. Giri, Y. Diao, C. J. Tassone, J. R. Matthews, M. L. Sorensen, S. C.
    B. Mannsfeld, W. C. Chen, H. H. Fong, J. B. H. Tok, M. F. Toney, M. He, Z. Bao, Adv.
    Funct. Mater. 2014, 24, 3524.
    [35] R. Steyrleuthner, M. Schubert, I. Howard, B. Klaumünzer, K. Schilling, Z. Chen,
    P. Saalfrank, F. Laquai, A. Facchetti, D. Neher, J. Am. Chem. Soc. 2012, 134, 18303
    [36] X. Chang, J. Fan, M. Wang, Z. Wang, H. Peng, G. He, Y. Fang, Sci.
    Rep. 2016, 6, 31187.
    [37] G. J. Hedley, F. Steiner, J. Vogelsang, J. M. Lupton,J. Phys. Chem. Lett. 2017, 8,
    3494
    [38] D. Raithel, S. Baderschneider, T. B. de Queiroz, R. Lohwasser, J. Köhler, M.
    Thelakkat, S. Kümmel, R. Hildner, Macromolecules 2016, 49, 9553.
    [39] R. Steyrleuthner, R. Di Pietro, B. A. Collins, F. Polzer, S. Himmelberger, M.
    Schubert, Z. Chen, S. Zhang, A. Salleo, H. Ade, A. Facchetti, D. Neher, J. Am. Chem.
    Soc. 2014, 136, 4245.
    [40] H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A.
    Facchetti, Nature 2009, 457, 679.
    [41] F. Zheng, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, C.-K. Lv, W. Qin, Y.-Z. Wang, X.-T.
    Hao, K. P. Ghiggino and L. Feng, Org. Electron., 2017, 44, 149
    [42] H. Sirringhaus, Adv. Mater. 2005, 17, 2411.
    [43] F. Panzer, H. Bässler, A. Köhler, J. Phys. Chem. Lett. 2017, 8, 114.
    [44] Banerji, N.; Seifter, J.; Wang, M. F.; Vauthey, E.; Wudl, F.; Heeger, A. J. Phys. Rev.
    B. 2011, 84, 075206.
    [45] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C.
    Bradley, M. Giles, I. McCulloch, C.‐S. Ha, M. Ree, Nat. Mater. 2006, 5, 197–203
    [46] Green J. 2008. Using Hansen solubility parameters to model solvent
    blends. Proceedings of the 88th Annual Meeting of the Texas Section of MAA; 2008
    April 2–5; Stepheneville, Tex .
    [47] M. Park, F. Kim Polymers, 11 (2019), p. 112
    [48] H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, K.
    Mullen, Adv. Mater. 2009, 21, 209.
    [49] J. Y. Oh, S. Rondeau‐Gagné, Y.‐C. Chiu, A. Chortos, F. Lissel, G.‐J. N. Wang, B.
    C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.‐G.
    Bae, Y. Kim, L. Jin, J. W. Chung, J. B. H. Tok, Z. Bao, Nature 2016, 539, 411.
    [50] H. Fritzsche, J. non‐crystall. Solids 6, 49 (1971).

    無法下載圖示 全文公開日期 2025/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE