簡易檢索 / 詳目顯示

研究生: 張家綺
Chia-Chi Chang
論文名稱: Synergistic Performance of Composite Supercapacitors
Synergistic Performance of Composite Supercapacitors
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 呂世源
Shih-Yuan Lu
廖英志
Ying-Chih Liao
王丞浩
Chen-Hao Wang
氏原真樹
Masaki Ujihara
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 65
中文關鍵詞: 碳奈米角碳點導電高分子協同效應超級電容器
外文關鍵詞: Carbon nanohorn, Carbon dots, Conducting polymer, Synergistic effect, Supercapacitor
相關次數: 點閱:297下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用原位聚合法(in-situ polymerization method)合成不同重量比(單體:碳奈米角=1:0,1:0.33,1:1,3:0:1)之碳奈米角(carbon nanohorn, CNH)與導電高分子(聚苯胺(polyaniline, PA)和聚吡咯(polypyrrole, PP))(polymer@CNH)之複合材料並研究其電化學行為。再來是透過添加碳奈米點(carbon dots, C-dots)於polymer@CNH複合材料中,進一步研究添加C-dots是否具增強其電化學性能。
    本實驗發現在PA@CNH電極系列中,當單體: CNH =1:3時,其比電容值達最大(762 F/g在5 mV/s掃描速率下)。在PP@CNH電極系列中,比電容值隨CNH含量增加而逐漸變小。由電化學結果得知PA@CNH複合材料因具有低的電荷轉移電阻,因此使電荷轉移更快且具有更高的電化學性能,表明PA和CNH兩者具有良好的協同作用。此外polymer@CNH複合材料經5000圈穩定測試後,仍保有90%以上之電容維持率表示其循環穩定性能佳。
    透過C-dots的加入,由實驗結果發現C-dots擬可在CNH和導電高分子之間形成導電橋梁,提升電極導電率,進而提高比電容值。PA@CNH/ C-dots和PP@CNH/ C-dots複合材料的比電容值分別為1206 F/g和538 F/g,比電容值比沒有添加C-dots的複合材料各高出1.6及2.3倍。在交流阻抗分析和循環穩定性測試中,可以發現相較於polymer@CNH複合材料,C-dots與polymer@CNH複合材料具有較低的電荷轉移電阻及保有更高的電容維持率(PA@CNH/ C-dots (97%)、PP@CNH/ C-dots (95%))。因此,polymer@CNH含C-dots之複合材料在電容量、電荷轉移電阻、穩定性方面均有提升(特別是PA),其具發展潛力的儲能裝置電極材料。


    This thesis described the electrochemical behavior of composites of carbon nanohorn (CNH) with conducting polymers (polyaniline (PA) and polypyrrole (PP)). The materials at different weight ratios (monomer:CNH = 1:0, 1:0.33, 1:1, 1:3 and 0:1) and (monomer:CNH:C-dots = 1:3:1) were prepared by the in-situ polymerization method.
    In the case of PA-series electrodes, specific capacitance was maximum (762 F/g at scan rate of 5 mV/s). Meanwhile, in the PP-series electrodes, the specific capacitance gradually decreased from 769 F/g at 5 mV/s of 1:0 (pyrrole:CNH) with increasing the content of CNH. Whereas, the charge transfers resistance behavior completely contrary to the specific capacitance on the composite ratio dependence. These electrochemical results indicate that PA-series composites have strong synergy effect between PA and CNH facilitated by faster charge transfer, smaller internal resistance, and better mechanical properties, resulting in improved capacitance performances.
    Furthermore, since composites of both polymers at 1:3 (monomer:CNH) ratio showed excellent capacitance retention with a retention ratio of 95% after 5000 cycles, both polymers are strengthened their cycling stability after hybridization with CNH.
    To assess the enhancement of specific capacitance by adding carbon dots (C-dots) on the composite consisting of CNH and conducting polymer. The addition of C-dots on composite consisting of CNH and polymer showed superior electrochemical influence in comparison with the electrode without C-dots. Incidentally, specific capacitance was 1206 F/g and 538 F/g for composites of CNH with PA and PP, respectively, and C-dots. These values were 1.6 and 2.3 times higher than values for composites without C-dots. Moreover, these composites exhibited very high capacitance retention (97 and 95 %, respectively). Thus, these results indicate that the addition of C-dots to composites of CNH with conducting polymers (especially polyaniline) provides significant potential for promising electrode materials for energy storage devices with high efficiency.

    Abstract i 摘要 iii Acknowledgements iv Contents v List of Figures vii List of Tables x Chapter 1: Introduction and Motivation 1 1.1 Classification of Supercapacitors 1 1.2 Materials for Supercapacitors 2 1.3 Applications of Supercapacitors 4 1.4 Motivation 6 Chapter 2: Experimental Section 7 2.1 Materials 7 2.2 Synthesis of CNH/conducting polymers composites 8 2.3 Synthesis of CNH/C-dots/conducting polymers composites 9 2.4 Preparation of working electrode for electrochemical measurement 11 2.5 Instruments 12 Chapter 3: Results and Discussion 13 3.1 Composite Supercapacitors of CNH with Conducting Polymer 13 3.1.1 Characterization of composites 13 3.1.2 Synergistic Performance of composite electrodes 18 3.2 Composite Supercapacitors of CNH with conducting polymers and C-dots composites 32 3.2.1 Characterization of composites 32 3.2.2 Enhanced specific capacitance induced by C-dots 35 Chapter 4: Conclusion 43 References 44 Appendix 52

    1. Yu, A.; Chabot, V.; Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; CRC Press, 2013.
    2. Guerrero, M. A.; Romero, E.; Barrero, F.; Milanés, M. I.; González, E., Supercapacitors: Alternative Energy Storage Systems. Electrical Rev. 2009, 85, 188-195.
    3. Abbey, C.; Joos, G., Supercapacitor Energy Storage for Wind Energy Applications. ITIA 2007, 43, 769-776.
    4. Ahmed, M. M.; Imae, T., Electrochemical Properties of a Thermally Expanded Magnetic Graphene Composite with a Conductive Polymer. Phys. Chem. Chem. Phys. 2016, 18, 10400-10410.
    5. Liu, M.; Tjiu, W. W.; Pan, J.; Zhang, C.; Gao, W.; Liu, T., One-Step Synthesis of Graphene Nanoribbon–Mno 2 Hybrids and Their All-Solid-State Asymmetric Supercapacitors. Nanoscale 2014, 6, 4233-4242.
    6. Frackowiak, E.; Beguin, F., Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 2001, 39, 937-950.
    7. Peng, C.; Zhang, S.; Jewell, D.; Chen, G. Z., Carbon Nanotube and Conducting Polymer Composites for Supercapacitors. Prog. Nat. Sci. 2008, 18, 777-788.
    8. Halper, M. S.; Ellenbogen, J. C., Supercapacitors: A Brief Overview. MITRE Nanosystems Group 2006.
    9. Lu, M.; Beguin, F.; Frackowiak, E., Supercapacitors: Materials, Systems and Applications; John Wiley & Sons, 2013.
    10. Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
    11. Béguin, F.; Frackowiak, E., Carbons for Electrochemical Energy Storage and Conversion Systems; CRC Press, 2009.
    12. Chen, X.; Paul, R.; Dai, L., Carbon-Based Supercapacitors for Efficient Energy Storage. Natl. Sci. Rev. 2017, nwx009.
    13. Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M., Aligned Mwcnt Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance. Electrochem. Solid-State Lett. 2007, 10, A106-A110.
    14. Lu, W.; Dai, L., Carbon Nanotube Supercapacitors. In Carbon Nanotubes, InTech, 2010.
    15. Li, W.; Zhang, F.; Dou, Y.; Wu, Z.; Liu, H.; Qian, X.; Gu, D.; Xia, Y.; Tu, B.; Zhao, D., A Self‐Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Adv. Energy Mater. 2011, 1, 382-386.
    16. Wang, K.; Wang, Y.; Wang, Y.; Hosono, E.; Zhou, H., Mesoporous Carbon Nanofibers for Supercapacitor Application. J. Phys. Chem. C 2008, 113, 1093-1097.
    17. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863-4868.
    18. Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S., Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 2012, 12, 1806-1812.
    19. Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845-854.
    20. Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L., Progress of Electrochemical Capacitor Electrode Materials: A Review. Int. J. Hydrogen Energy 2009, 34, 4889-4899.
    21. Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G., Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials (Basel) 2015, 5, 1732-1755.
    22. Bandow, S.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Qin, L. C.; Iijima, S., Interlayer Spacing Anomaly of Single-Wall Carbon Nanohorn Aggregate. Chem. Phys. Lett. 2000, 321, 514-519.
    23. Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K., Nano-Aggregates of Single-Walled Graphitic Carbon Nano-Horns. Chem. Phys. Lett. 1999, 309, 165-170.
    24. Zhu, S.; Xu, G., Single-Walled Carbon Nanohorns and Their Applications. Nanoscale 2010, 2, 2538-2549.
    25. Unnikrishnan, B.; Wu, C.-W.; Chen, I.-W. P.; Chang, H.-T.; Lin, C.-H.; Huang, C.-C., Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustain. Chem. Eng. 2016, 4, 3008-3016.
    26. Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W., Carbon Dots: Surface Engineering and Applications. J. Mater. Chem. B 2016, 4, 5772-5788.
    27. Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H., Design and Preparation of a Ternary Composite of Graphene Oxide/Carbon Dots/Polypyrrole for Supercapacitor Application: Importance and Unique Role of Carbon Dots. Carbon 2017, 115, 134-146.
    28. Lokhande, C.; Dubal, D.; Joo, O.-S., Metal Oxide Thin Film Based Supercapacitors. CAP 2011, 11, 255-270.
    29. Yang, D., Application of Nanocomposites for Supercapacitors: Characteristics and Properties. In Nanocomposites-New Trends and Developments, InTech, 2012.
    30. Zhou, J.; Yu, L.; Liu, W.; Zhang, X.; Mu, W.; Du, X.; Zhang, Z.; Deng, Y., High Performance All-Solid Supercapacitors Based on the Network of Ultralong Manganese Dioxide/Polyaniline Coaxial Nanowires. Sci. Rep. 2015, 5.
    31. Molapo, K. M.; Ndangili, P. M.; Ajayi, R. F.; Mbambisa, G.; Mailu, S. M.; Njomo, N.; Masikini, M.; Baker, P.; Iwuoha, E. I., Electronics of Conjugated Polymers (I): Polyaniline. Int. J. Electrochem. Sci. 2012, 7, 11859-11875.
    32. Snook, G. A.; Kao, P.; Best, A. S., Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1-12.
    33. Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y., Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int. J. Mol. Sci. 2010, 11, 2636-2657.
    34. Baisden, A. C.; Emadi, A., Advisor-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles. IEEE T. Veh. Technol. 2004, 53, 199-205.
    35. Sarangapani, S.; Tilak, B.; Chen, C. P., Materials for Electrochemical Capacitors Theoretical and Experimental Constraints. J. Electrochem. Soc. 1996, 143, 3791-3799.
    36. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
    37. Conway, B. E., Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138, 1539-1548.
    38. Douglas, H.; Pillay, P. In Sizing Ultracapacitors for Hybrid Electric Vehicles, Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, IEEE: 2005; p 6 pp.
    39. Khaligh, A.; Li, Z., Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE T. Veh. Technol. 2010, 59, 2806-2814.
    40. Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K., Energy Storage Devices for Future Hybrid Electric Vehicles. J. Power Sources 2007, 168, 2-11.
    41. Emadi, A.; Lee, Y. J.; Rajashekara, K., Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-in Hybrid Electric Vehicles. ITIE 2008, 55, 2237-2245.
    42. Osaka, T.; Datta, M., Energy Storage Systems in Electronics; CRC Press, 2000.
    43. Burke, A. F., Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 806-820.
    44. Bean, H.; Robins, M.; Flach, M., Ultracapacitor-Based Power Supply for an Electronic Device. Google Patents: 2002.
    45. Salerno, D., Ultralow Voltage Energy Harvester Uses Thermoelectric Generator for Battery-Free Wireless Sensors. LT Journal 2010, 2010, 1-11.
    46. Di, W.; Haolan, W.; Pritesh, H.; Piers, A.; Tapani, R.; Yasuhiko, H.; Gehan, A. J. A., Template-Free Electrochemical Nanofabrication of Polyaniline Nanobrush and Hybrid Polyaniline with Carbon Nanohorns for Supercapacitors. Nanotechnology 2010, 21, 435702. (doi:10.1088/0957-4484/21/43/435702)
    47. Maiti, S.; Khatua, B., Polyaniline Integrated Carbon Nanohorn: A Superior Electrode Materials for Advanced Energy Storage. Express Polym. Lett. 2014, 8, 895-907.
    48. Pal, A.; Sk, M. P.; Chattopadhyay, A., Conducting Carbon Dot–Polypyrrole Nanocomposite for Sensitive Detection of Picric Acid. ACS Appl. Mater. Inter. 2016, 8, 5758-5762.
    49. Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P., Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. J. Am. Chem. Soc. 2011, 134, 747-750.
    50. Babu, V. J.; Vempati, S.; Ramakrishna, S., Conducting Polyaniline-Electrical Charge Transportation. Mater. Sci. Appl. 2013, 4, 1-10.
    51. Blinova, N. V.; Stejskal, J.; Trchová, M.; Prokeš, J.; Omastová, M., Polyaniline and Polypyrrole: A Comparative Study of the Preparation. Eur. Polym. J. 2007, 43, 2331-2341.
    52. Zhou, D.; Li, Y.; Wang, J.; Xu, P.; Han, X., Synthesis of Polyaniline Nanofibers with High Electrical Conductivity from Ctab–Sdbs Mixed Surfactants. Mater. Lett. 2011, 65, 3601-3604.
    53. Stejskal, J.; Omastová, M.; Fedorova, S.; Prokeš, J.; Trchová, M., Polyaniline and Polypyrrole Prepared in the Presence of Surfactants: A Comparative Conductivity Study. Polymer 2003, 44, 1353-1358.
    54. Mi, H.; Zhang, X.; Ye, X.; Yang, S., Preparation and Enhanced Capacitance of Core–Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors. J. Power Sources 2008, 176, 403-409.
    55. Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media, 2013.
    56. Oueiny, C.; Berlioz, S.; Perrin, F.-X., Carbon Nanotube–Polyaniline Composites. Prog. Polym. Sci. 2014, 39, 707-748.
    57. Zhou, Y.; Qin, Z.-Y.; Li, L.; Zhang, Y.; Wei, Y.-L.; Wang, L.-F.; Zhu, M.-F., Polyaniline/Multi-Walled Carbon Nanotube Composites with Core–Shell Structures as Supercapacitor Electrode Materials. Electrochim. Acta. 2010, 55, 3904-3908.
    58. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y., Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522-2527.
    59. Reynolds, J. R., Conjugated Polymers: Processing and Applications; CRC press, 2006.
    60. Choi, J.; Chipara, M.; Xu, B.; Yang, C.; Doudin, B.; Dowben, P., Comparison of the Π-Conjugated Ring Orientations in Polyaniline and Polypyrrole. Chem. Phys. Lett. 2001, 343, 193-200.
    61. Zhou, Y.-k.; He, B.-l.; Zhou, W.-j.; Huang, J.; Li, X.-h.; Wu, B.; Li, H.-l., Electrochemical Capacitance of Well-Coated Single-Walled Carbon Nanotube with Polyaniline Composites. Electrochim. Acta. 2004, 49, 257-262.
    62. Shaktawat, V.; Jain, N.; Saxena, R.; Saxena, N.; Sharma, K.; Sharma, T., Temperature Dependence of Electrical Conduction in Pure and Doped Polypyrrole. Polym. Bull. (Berl.) 2006, 57, 535-543.
    63. Zheng, Q.; Xue, Q.; Yan, K.; Hao, L.; Li, Q.; Gao, X., Investigation of Molecular Interactions between Swnt and Polyethylene/Polypropylene/Polystyrene/Polyaniline Molecules. J. Phys. Chem. C 2007, 111, 4628-4635.
    64. Street, G.; Clarke, T.; Geiss, R.; Lee, V.; Nazzal, A.; Pfluger, P.; Scott, J., Characterization of Polypyrrole. J. Phys. Colloq. 1983, 44, C3-599-C3-606.
    65. Li, Y., Organic Optoelectronic Materials; Springer, 2015; Vol. 91.
    66. Wang, R.-X.; Huang, L.-F.; Tian, X.-Y., Understanding the Protonation of Polyaniline and Polyaniline–Graphene Interaction. J. Phys. Chem. C 2012, 116, 13120-13126.
    67. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J., Aromatic Interactions. J. Chem. Soc., Perkin. Trans. 2 2001, 651-669.
    68. Sun, L.; Tian, C.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H., Nitrogen‐Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chem. Eur. J. 2014, 20, 564-574.
    69. Kulkarni, S. B.; Patil, U. M.; Shackery, I.; Sohn, J. S.; Lee, S.; Park, B.; Jun, S., High-Performance Supercapacitor Electrode Based on a Polyaniline Nanofibers/3d Graphene Framework as an Efficient Charge Transporter. J. Mater. Chem. A 2014, 2, 4989-4998.
    70. Chen, S.; Xing, W.; Duan, J.; Hu, X.; Qiao, S. Z., Nanostructured Morphology Control for Efficient Supercapacitor Electrodes. J. Mater. Chem. A 2013, 1, 2941-2954.
    71. Im, S.; Park, Y. R.; Park, S.; Kim, H. J.; Doh, J. H.; Kwon, K.; Hong, W. G.; Kim, B.; Yang, W. S.; Kim, T., Nanoparticle Intercalation-Induced Interlayer-Gap-Opened Graphene–Polyaniline Nanocomposite for Enhanced Supercapacitive Performances. Appl. Surf. Sci. 2017, 412, 160-169.
    72. Jian, X.; Li, J.-g.; Yang, H.-m.; Zhang, E.-h.; Liang, Z.-h., Carbon Quantum Dots Reinforced Polypyrrole Nanowire Via Electrostatic Self-Assembly Strategy for High-Performance Supercapacitors. Carbon 2017, 114, 533-543.

    QR CODE