簡易檢索 / 詳目顯示

研究生: 林子翔
ZI-XIANG LIN
論文名稱: 應用於電動載具之混合儲能模組設計及能量管理策略
Hybrid Energy Storage Module Design and Energy Management Strategy for Electric Vehicles
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳偉倫
Woei-Luen Chen
張俊興
Chun-Hsin Chang
劉華棟
Hwa-Dong Liu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 182
中文關鍵詞: 混合儲能系統超級電容半主動式模組化鋰離子超級電容數位 控制器
外文關鍵詞: HESS, Supercapacitor Semi-active HESS, lithium-ion
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在研製應用於電動載具之混合儲能系統,將其實際應用於電動載具,並提出基於超級電容的能量管理策略。所提系統是將鋰離子超級電容組與同步整流型升壓轉換器進行混合儲能模組化設計,以提供更靈活的能量儲存和釋放方案,並利用超級電容半主動式混合儲能系統架構與Gogoro電動機車的原始鋰電池系統整合。其次,為了將電動載具負載於鋰電池與超級電容作合理分配,本文透過數位控制器取樣電動載具負載功率之變化量,並提出即時功率平均化估測的能量管理策略,可快速地分配負載功率,使電池達到平滑輸出電流之目的,以減少電池瞬間充放電以及降低電流應力,進而延長鋰電池的壽命。
    最後,透過建立混合儲能系統測試平台,以驗證模擬與實測結果。本文實際測試包含兩個主要部分,首先,是在動力計上對電動載具進行WMTC行車型態測試;其次,是在實際道路環境中進行測試,模擬電動機車行駛於道路上三項較為常見之駕駛狀態,以驗證本文提出的能量管理策略的有效性及模組化設計的可擴充性。


    This research aims to develop a hybrid energy storage system for electric vehicles (EVs) and apply it to actual EVs. It proposes an energy management strategy (EMS) based on supercapacitors. The system combines lithium-ion supercapacitor modules with synchronous rectifier boost converters in a modular design, providing a more flexible energy storage and release solution. The system integrates the supercapacitor-based semi-active hybrid energy storage system (HESS) architecture with the original lithium battery system of Gogoro electric scooters.To allocate the load between the lithium battery and supercapacitors in the EV, a digital controller samples the variations in the EV’s load power and proposes a real-time power averaging estimation energy management strategy. This strategy quickly allocates load power, achieving smooth output current from the battery to reduce instantaneous charging and discharging and minimize current stress, thereby extending the lithium battery’s lifespan.
    Finally, a hybrid energy storage system test platform is established to validate the simulation and experimental results. The actual tests consist of two main parts. First, the EV undergoes WMTC (Worldwide Motorcycle Test Cycle) testing on a dynamometer. Second, tests are conducted in real-road conditions, simulating three common driving scenarios for electric scooters to verify the effectiveness of the proposed energy management strategy and the scalability of the modular design.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 11 第二章 混合儲能系統之電路分析 12 2.1 混合儲能系統架構簡介 12 2.2 同步整流型升壓轉換器介紹 14 2.3 同步整流型升壓轉換器模式分析 15 2.3.1 升壓模式分析 15 2.3.2 降壓模式分析 20 第三章 混合儲能模組設計考量 26 3.1 超級電容半主動式混合儲能模組設計考量 28 3.1.1 確認電動載具負載功率變化範圍 28 3.1.2 確認電池組之系統規格 30 3.1.3 超級電容組設計考量 31 3.1.4 電能轉換器兩側之規格及最大功率考量 39 3.2 同步整流型升壓轉換器電感值設計 40 3.3 數位控制器設計 42 3.3.1 數位控制器簡介 43 3.3.2 數位控制器STM32G474CET6介紹 44 3.3.3 回授電路 47 3.3.4 閘極驅動電路 53 3.3.5 電流回授控制之設計與實現 55 3.3.6 類比數位信號轉換器(ADC) 57 3.3.7 模組保護功能 58 3.4 超級電容組之保護電路 59 3.4.1 電池管理晶片MAX14921介紹 60 3.4.2 串列週邊介面 61 3.4.3 平衡架構 62 3.4.4 超級電容保護策略 65 3.5 通訊介面 67 3.5.1 無線通訊技術簡介 68 3.5.2 人機介面 72 3.5.3 離線型數據儲存系統 74 3.5.4 CAN FD通訊介面 76 3.6 輔助電源之應用與介紹 78 第四章 能量管理策略 80 4.1 電動機車負載特性 81 4.1.1 WMTC行車型態簡介 82 4.1.2 能量管理策略設計依據 85 4.2 即時功率平均化估測之控制策略 86 4.2.1 滑動視窗 87 4.2.2 滑動視窗取樣時間以及平滑化效果變化 88 4.3 即時功率平均化取樣頻率 91 4.3.1 即時功率平均化估測之取樣頻率控制範圍 92 4.3.2 即時功率平均化之取樣頻率命令值 97 第五章 系統模擬與實測驗證 99 5.1 混合儲能系統建模 99 5.1.1 電池模型 100 5.1.2 超級電容模型 101 5.1.3 同步整流型雙向升壓轉換器模型 106 5.1.4 能量管理策略模型 111 5.2 混合儲能模組模擬結果 113 5.2.1 頻域分析 123 5.2.2 時域分析 126 5.3 混合儲能模組實測與驗證 127 5.3.1 實測平台 127 5.3.2 實測結果 131 第六章 結論與未來展望 152 6.1 結論 152 6.2 未來展望 153 參考文獻 154

    [1]"臺灣2050淨零排放"[Online].Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1.
    [2]Rudolph G Jungst, Ganesan Nagasubramanian, Herbert L Case, Bor Yann Liaw, Angel Urbina, Thomas L Paez, Daniel H Doughty,, "Accelerated calendar and pulse life analysis of lithium-ion cells," Journal of Power Sources, vol. 119–121, pp. 870-873, 2003.
    [3]N. Omar et al., "Lithium Iron Phosphate Based Battery – Assessment of The Aging Parameters and Development of Cycle Life Model," Applied Energy, vol. 113, pp. 1575-1585, 2014.
    [4]S. Breucker, K. Engelen, R. D’hulst, J. Driesen, "Impact of Current Ripple on Li-ion Battery Ageing," EVS27, pp. 17-20, 2013.
    [5]K. Uddin, A. Moore, A. Barai, J. Marco, "The effects of high frequency current ripple on electric vehicle battery performance," Applied Energy, vol. 178, pp. 142-154, 2016.
    [6]K. Uddina, L. Somerville, A. Barai, M. Lain, T.R. Ashwin, P. Jennings, J. Marco, "The impact of high-frequency-high-current perturbations on formation at the negative electrode-electrolyte interface," Electrochimica Acta, vol. 233, pp. 1-12, 2017.
    [7]S. Zhou, Z. Chen, D. Huang and T. Lin, "Model Prediction and Rule Based Energy Management Strategy for a Plug-in Hybrid Electric Vehicle With Hybrid Energy Storage System," IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5926-5940, May 2021, doi: 10.1109/TPEL.2020.3028154.
    [8]A. Avila, M. Lucu, A. Garcia-Bediaga, U. Ibarguren, I. Gandiaga and A. Rujas, "Hybrid Energy Storage System Based on Li-Ion and Li-S Battery Modules and GaN-Based DC-DC Converter," IEEE Access, vol. 9, pp. 132342-132353, 2021, doi: 10.1109/ACCESS.2021.3114785.
    [9]H. Li, H. Chaoui and H. Gualous, "Cost Minimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Power Sources Degradation," in IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 12832-12842, Nov. 2020, doi: 10.1109/TVT.2020.3031000.
    [10]Cheng L, Wang W, Wei S, Lin H, Jia Z. "An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles, " Energies 2018, 11, 423. https://doi.org/10.3390/en11020423
    [11]Souvik Ghosh, Prakas Samanta, Aniruddha Kundu, Haradhan Kolya, Chun-Won Kang, Naresh Chandra Murmu, Tapas Kuila, " Unveiling the role of surface functional groups for the design of nickel manganese/reduced graphene oxide based composite electrode material for high performance asymmetric supercapacitor, " Journal of Energy Storage, Volume 56, Part B, 2022.
    [12]Alisher Abdisattar, Mukhtar Yeleuov, Chingis Daulbayev, Kydyr Askaruly, Aidos Tolynbekov, Azamat Taurbekov, Nikolay Prikhodko, "Recent advances and challenges of current collectors for supercapacitors, "Electrochemistry Communications, Volume 142, 2022.
    [13]Mingxiang Hu, Hongwei Zhang, Ruitao Lv, " Layered carbon-based pseudocapacitive materials for lithium/sodium-ion capacitor with high energy-power densities and long cycle life, "Progress in Natural Science: Materials International, Volume 30, Issue 1,2020.
    [14]Siang Fui Tie, Chee Wei Tan, "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, vol. 20, pp. 82-102, 2013.
    [15]T. Ma, H. Yang, L. Lu, "Development of Hybrid Battery–Supercapacitor Energy Storage for Remote Area Renewable Energy Systems," Applied Energy, vol. 153, pp. 56-62, 2015.
    [16]N. Omar, J. V. Mierlo, B. Verbrugge, P. V. d. Bossche, "Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications," Electrochimica Acta, vol. 55, p. 7524-7531, 2015.
    [17]T. Ma, H. Yang, L. Lu, “Development of hybrid battery– supercapacitor energy storage for remote area renewable energy systems”, Elsevier Applied Energy, vol. 153, pp. 56- 62, Sep. 2015, doi: 10.1016/j.apenergy.2014.12.008
    [18]A. Khaligh and Z. Li, "Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art," IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806-2814, July 2010, doi: 10.1109/TVT.2010.2047877.
    [19]B. Wang, J. Xu, D. Xu, Z. Yan, “Implementation of an estimator-based adaptive sliding mode control strategy for a boost converter based battery/supercapacitor hybrid energy storage system in electric vehicles”, Elsevier Energy Conversion and Management, vol. 151, pp. 562-572, Nov. 2017, doi: 10.1016/j.enconman.2017.09.007
    [20]B. Wang, J. Xu, R. Wai and B. Cao, “Adaptive Sliding-Mode With Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles”, IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1404-1414, Feb., 2017, doi: 10.1109/TIE.2016.2618778
    [21]L. Kouchachvili, W. Yaïci, E. Entchev, "Hybrid battery / supercapacitor energy storage system for the electric vehicles," Journal of Power Sources, vol. 374, pp. 237-248, 2018.
    [22]J. Cao and A. Emadi, "A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles," 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 2009, pp. 941-946, doi: 10.1109/VPPC.2009.5289744.
    [23]S. Dusmez, A. Hasanzadeh, A. Khaligh, "Comparative Analysis of Bidirectional Three-Level DC–DC Converter for Automotive Applications," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3305-3315, 2015.
    [24]Z. Song et al., “Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach”, Elsevier Applied Energy, vol.139, pp. 151-162, Feb. 2015, doi: 10.1016/j.apenergy.2014.11.020
    [25]H. He, R. Xiong, K. Zhao, Z. Liu, “Energy management strategy research on a hybrid power system by hardware-inloop experiments”, Elsevier Applied Energy, vol. 112, pp. 1311-1317, Dec. 2013, doi: 10.1016/j.apenergy.2012.12.029.
    [26]Q. Zhang and G. Li, “Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application”, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014-1021, Jan. 2020, doi: 10.1109/TPEL.2019.2912425
    [27]Y. Eren, O. Erdinc, H. Gorgun, M. Uzunoglu, B. Vural, “A fuzzy logic based supervisory controller for an FC/UC hybrid vehicular power system”, Elsevier International Journal of Hydrogen Energy, vol. 34, pp. 8681-8694, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.033.
    [28]L. Sun, P. Walker, K. Feng, N. Zhang, "Multi-Objective Component Sizing for a Battery-Supercapacitor Power Supply Considering the Use of a Power Converter," Energy, vol. 142, pp. 436-446, 2018.
    [29]G. Guidi, T. M. Undeland and Y. Hori, "Optimized power electronics interface for auxiliary power buffer based on supercapacitors," 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677433.
    [30]C. Zheng, W. Li, Q. Liang, "An Energy Management Strategy of Hybrid Energy Storage Systems for Electric Vehicle Applications," IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, 2018.
    [31]Z. Songb, J. Hou, S. Xu, M. Ouyang, J. Li, "The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses," Energy, vol. 135, pp. 91-100, 2017.
    [32]H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, “Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle”, International Journal of Hydrogen Energy, vol. 42, pp. 8857-8869, Mar. 2017, doi: 10.1016/j.ijhydene.2016.09.190
    [33]A. L. Allègre, A. Bouscayrol, R. Trigui, "Flexible Real-time Control of a Hybrid Energy Storage System for Electric Vehicles," IET Electr. Syst. Transp., vol. 3, pp. 79-85, 2013.
    [34]A. Kuperman, I. Aharon, S. Malki, A. Kara, "Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source," IEEE Transactions on Power Electrionics, vol. 28, no. 2, pp. 806-815, 2013.
    [35]B. Wang, C. Wang, G. Ma, L. Zhang, "Power-split Strategy Based on Average Power Method for Semi-active Hybrid Energy Storage System in Small Electric Vehicles," Energy Procedia, vol. 158, pp. 2994-2999, 2019.
    [36]B. Wang, Q. Hu, Z. Wang, "Improving Power Output of Battery and Mode Switching Frequency Based on Real-Time Average Power Method for Multi-Mode Hybrid Energy Storage System in Electric Vehicles," IEEE Access, vol. 8, pp. 34654-34663, 2020.
    [37]F. Zhu, L. Chen, C. Yin, " Design and Analysis of a Novel Multimode Transmission for a HEV Using a Single Electric Machine," IEEE Transactions on Vehicular Technology, vol. 62, pp. 1097-1110, 2013.
    [38]H. Yin, W. Zhou, M. Li, C. Ma, C. Zhao, "An Adaptive Fuzzy Logic-Based Energy Management Strategy on Battery/Ultracapacitor Hybrid Electric Vehicles," IEEE Transactions on Transportation Electrification, vol. 2, no. 3, pp. 300-311, 2016.
    [39]S. T. Sisakat, S. M. Barakati, "Fuzzy energy management in electrical vehicles with different hybrid energy storage topologies," CFIS, 2015.
    [40]M. Sellali, A. Betka, S. Drid, A. Djerdir, L. Allaoui, M. Tiar, "Novel control implementation for electric vehicles based on fuzzy-back stepping approach," Energy, vol. 178, pp. 644-655, 2019.
    [41]X. Hu, N. Murgovski, L. M. Johannesson, B. Egardt, "Comparison of Three Electrochemical Energy Buffers Applied to a Hybrid Bus Powertrain With Simultaneous Optimal Sizing and Energy Management," IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1193-1205, 2014.
    [42]Jie Shi, Luhao Wang, Wei-Jen Lee, Xingong Cheng, Xiju Zong, "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, vol. 256, 2019, doi: 10.1016/j.apenergy.2019.113915
    [43]A. Intidam, H. El Fadil, S. Nady, O. Benzouina, M. Koundi, K. Rachid, "Nonlinear Optimization Technique for Energy Management of HESS in Fuel cell Electric Vehicle," IFAC-PapersOnLine, vol. 55, no. 12, pp. 426-431, 2022, doi: 10.1016/j.ifacol.2022.07.349
    [44]J. Shen, A. Khaligh, "A Supervisory Energy Management Control Strategy in a Battery/Ultracapacitor Hybrid Energy Storage System," IEEE Trans. Transp. Electrification, vol. 1, no. 3, pp. 223-231, 2015.
    [45]Z. Chen, R. Xiong, J. Caob, "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, vol. 96, pp. 197-208, 2016.
    [46]F. M. Ibanez, A. M. B. Florez, S. Gutiérrez, J. Martín, "Extending the Autonomy of a Battery for Electric Motorcycles," IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3294-3305, 2019.
    [47]L. Sun, N. Zhang, " Reducing the Peak-to-average Power Ratio for Electric Vehicles using Hybrid Energy Storage Systems (HESS)," World Electric Vehicle Journal, vol. 8, pp.196-200, 2016.
    [48]L. Sun, K. Feng, C. Chapman, N. Zhang, "An Adaptive Power-Split Strategy for Battery–Supercapacitor Powertrain—Design, Simulation, and Experiment," IEEE Transactions on Power Electronics, vol. 32, pp. 9364-9375, 2017.
    [49]O. Tremblay, L. A. Dessaint, "Experimental Validation of a Battery Dynamic Model for EV Applications," World Electr. Veh. J., vol. 3, no. 2, pp. 289-298, 2009.
    [50]鄭鴻偉, “基於電流饋入推挽式轉換器之隔離型混合儲能系統研製,” 國立臺灣科技大學電機工程系碩士學位論文, 民國一百零九年七月.
    [51]游禮碩, “應用於電動載具之混合儲能系統建模與驗證,” 國立臺灣科技大學電機工程系碩士學位論文, 民國一百一十年八月.
    [52]陳君正, “應用於Gogoro電動機車之混合儲能系統研製,” 國立臺灣科技大學電機工程系碩士學位論文, 民國一百一十一年七月.

    無法下載圖示 全文公開日期 2033/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE