簡易檢索 / 詳目顯示

研究生: Tamene Tamiru Debelo
Tamene Tamiru Debelo
論文名稱: 基於氧化錳的超級電容器電極的製造使用同時電化學沉積的聚吡咯納米複合材料方法
FABRICATION OF SUPERCAPACITORS ELECTRODE BASED ON MANGANESE OXIDE AND POLYPYRROLE NANOCOMPOSITE USING SIMULTANEOUS ELECTROCHEMICAL DEPOSITION METHOD.
指導教授: 氏原真樹
Masaki Ujihara
口試委員: 今榮東洋子
Toyoko Imae
陳貴賢
Kuei-Hsien Chen
胡啟章
Chi-Chang Hu
陳翰儀
Han-Yi Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 124
中文關鍵詞: 聚吡咯
外文關鍵詞: polypyrrole, manganese Oxide, electrodeposition, nanocomposite
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電化學超級電容繼承了電池和電容的混合特性,目前正在為電子和汽車應用開發電化學超級電容。 電化學電容具有比電池更好的功率密度和比電容更好的能量密度,以及更長的迴圈壽命和快速充放電,使其成為各種應用的理想選擇。 二氧化錳具有成本低、理論電容量大、環境友好等優點,是一種理想的電化學電容電極材料。 然而,它的低電子和離子電導率阻礙了其在實際應用中的應用。 另一方面,聚吡咯具有更好的導電性,但理論電容較低。 因此,需要進一步研究以提高上述超級電容器電極的實際應用效能。
    本論文採用恆流電化學沉積科技,將金屬氧化物和導電聚合物製成超級電容電極。這項工作分為兩個部分:第一部分,採用恆電流為5 mA/cm2的電化學沉積工藝,在兩個不同的電極(陽極和陰極)上同時合成了MnOx和聚吡咯。 利用掃描電鏡、X射線能譜、X射線衍射和傅立葉變換紅外光譜分別對所製備電極的形貌、元素組成、結構和官能基進行研究。
    迴圈伏安計、恆電流充放電和電化學阻抗譜也用於評估電極的電化學效能。 出於各種目的,這些合成過程可用於製備二元和三元奈米複合電極。 在第二部分中,我們使用反向電沉積方法製備了用於電化學電容器的奈米複合電極。 用MnOx-NS表徵了用倒置沉積科技合成的以硝酸錳和吡咯單體為前驅物的奈米複合電極/ PPy@t 式中,t表示沉積時間。 這種奈米複合電極表現出良好的偽電容行為,其比電容幾乎是MnOx-NS的三倍


    Because of their hybrid features inherited from batteries and capacitors, electrochemical supercapacitors are now being developed for electronics and automotive applications. Electrochemical capacitors have better: power density than batteries and energy densities than capacitors, as well as long cyclic life and quick charge-discharge, making them ideal for a variety of applications. Manganese dioxide is a desirable electrochemical capacitor electrode material contender because of its low cost, high theoretical capacitance, and environmentally friendly. However, it’s low electronic and ionic conductivities have hampered its use in practical applications. On the other hand, polypyrrole have better electrical conductivity but lower theoretical capacitance. Therefore, further investigations are required to improve the performance of those aforementioned supercapacitors electrode for practical application.
    In this thesis, an electrochemical synthesis technique known as Galvanostatic electrochemical deposition was used to make supercapacitors electrodes out of metallic Oxide and conducting polymer. This work is divided into two sections: In the first section, using an electrochemical deposition process with a constant current of 5 mA/cm2, MnOx and polypyrrole were synthesized at the same time on two different electrodes known as anode and cathode. Scanning electron microscopy, X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to examine the morphology, elemental composition, structure, and functional group of the prepared electrodes respectively.
    A cyclic voltammeter, galvanostatic charge-discharge, and electrochemical impedance spectroscopy were also used to assess the electrodes' electrochemical performance. For various purposes, these synthesis processes can be employed to prepare binary and ternary nanocomposite electrodes. In the second section, we prepared nanocomposite electrodes for electrochemical capacitors using the inversion electrodeposition approach. The synthesized nanocomposite electrode form manganese nitrate and pyrrole monomer precursor by inversion deposition technique is assigned by MnOx-NS/PPy@t where t stands for the deposition time. This nanocomposite electrode exhibits a good psudocapacitive behavior with almost three times as high as the specific capacitance of MnOx-NS

    Tamene Tamiru Debelo Email-debelotamene21@gmail.com phone number=0905544193 publication lists 1.Electrodeposition of binder-free polypyrrole on a three-dimensional flower-like nanosheet of manganese oxides containing pyrrole derivative for supercapacitor electrode(https://doi.org/10.1016/j.matchemphys.2021.125690) 2.Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior(https://doi.org/10.1016/j.jelechem.2020.113825)

    [1] L. Schirone, F. Pellitteri, Energy policies and sustainable management of energy sources, J Sustainability 9 (2017) 2321.
    [2] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, J Energy Strategy Reviews 24 (2019) 38-50.
    [3] T. Egeland-Eriksen, A. Hajizadeh, S. Sartori, Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives, J international journal of hydrogen energy 46 (2021) 31963-31983.
    [4] A. Sen, Y.J.I.T.o.E.M. Qiu, Aggregate Household Behavior in Heating and Cooling Control Strategy and Energy-Efficient Appliance Adoption, J IEEE Transactions on Engineering Management
    69 (2020) 682 - 696.
    [5] X. Chen, Y. Chen, Z. Ma, F.C. Fernandes, How is energy consumed in smartphone display applications?, Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, 2013, pp. 1-6.
    [6] J. Paek, J. Kim, R. Govindan, Energy-efficient rate-adaptive GPS-based positioning for smartphones, Proceedings of the 8th international conference on Mobile systems, applications, and services, 2010, pp. 299-314.
    [7] J. Xu, C. Zhang, Z. Wan, X. Chen, S.H. Chan, Z.J.R. Tu, S.E. Reviews, Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review, 155 (2022) 111908.
    [8] S. Vazquez, S.M. Lukic, E. Galvan, L.G. Franquelo, J.M. Carrasco, Energy storage systems for transport and grid applications, J IEEE Transactions on industrial electronics 57 (2010) 3881-3895.
    [9] Y. Jin, X. Ma, X. Chen, Y. Cheng, E. Baris, M. Ezzati, medicine, Exposure to indoor air pollution from household energy use in rural China: the interactions of technology, behavior, and knowledge in health risk management, J Social science
    62 (2006) 3161-3176.
    [10] S. Rahman, I.A. Khan, A.A. Khan, A. Mallik, M.F. Nadeem, Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system, J Renewable
    Sustainable Energy Reviews
    153 (2022) 111756.
    [11] F. Ding, F. Xia, W. Zhang, X. Zhao, C. Ma, Monitoring energy consumption of smartphones, 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, IEEE, 2011, pp. 610-613.
    [12] T. Ishugah, Y. Li, R. Wang, J. Kiplagat, Advances in wind energy resource exploitation in urban environment: A review, J Renewable sustainable energy reviews
    37 (2014) 613-626.
    [13] S.A. Kalogirou, Environmental benefits of domestic solar energy systems, J Energy conversion management
    45 (2004) 3075-3092.
    [14] X. Chang, X. Liu, W. Zhou, Hydropower in China at present and its further development, J Energy 35 (2010) 4400-4406.
    [15] Z.S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, J Nature communications 4 (2013) 1-8.
    [16] F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density, J Energy Environmental Science
    6 (2013) 1623-1632.
    [17] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience and technology: a collection of reviews from Nature journals, World Scientific2010, pp. 320-329.
    [18] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, J Chemical Society Reviews 44 (2015) 7484-7539.
    [19] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, J Chemical reviews 104 (2004) 4245-4270.
    [20] H. Rezk, A.M. Nassef, M.A. Abdelkareem, A.H. Alami, A. Fathy, Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system, J International Journal of Hydrogen Energy 46 (2021) 6110-6126.
    [21] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, J Renewable sustainable energy reviews
    58 (2016) 1189-1206.
    [22] J.-G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, J Progress in Materials Science 74 (2015) 51-124.
    [23] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media2013.
    [24] B. Brusso, S. Chaparala, The Evolution of Capacitors [History], J IEEE Industry Applications Magazine 20 (2014) 8-12.
    [25] A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, Taylor & Francis2013.
    [26] J. Ho, T.R. Jow, S. Boggs, Historical introduction to capacitor technology, IEEE Electrical Insulation Magazine 26 (2010) 20-25.
    [27] A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A. Abu Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors, J Sensors 14 (2014) 16343-16422.
    [28] M. Lu, Supercapacitors: materials, systems, and applications, John Wiley & Sons2013.
    [29] H.I. Becker, Low voltage electrolytic capacitor, Google Patents, 1957.
    [30] M.S. Halper, J.C. Ellenbogen, Supercapacitors: A brief overview, J The MITRE Corporation, McLean, Virginia, USA 1 (2006).
    [31] R. Chen, Colloidal Fabrication Techniques for the Development of Supercapacitor Electrodes and Devices, 2019.
    [32] B.D. Boruah, Recent advances in off-grid electrochemical capacitors, J Energy Storage Materials 34 (2021) 53-75.
    [33] P. Sharma, T. Bhatti, management, A review on electrochemical double-layer capacitors, J Energy conversion 51 (2010) 2901-2912.
    [34] Y. Liu, Fabrication of Composite Electrodes and Supercapacitor Devices, 2016.
    [35] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, J Chemical Society Reviews 41 (2012) 797-828.
    [36] A. Afif, S.M. Rahman, A.T. Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage–a review, J Journal of Energy Storage 25 (2019) 100852.
    [37] M.Z. Iqbal, U. Aziz, Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices, J Journal of Energy Storage 46 (2022) 103823.
    [38] P. Sharma, V. Kumar, Current technology of supercapacitors: A review, J Journal of Electronic Materials 49 (2020) 3520-3532.
    [39] T. Prasankumar, J. Jose, S. Jose, S.P. Balakrishnan, Pseudocapacitors, (2021).
    [40] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, J Journal of Energy Storage 17 (2018) 224-227.
    [41] K. Shi, Advanced Materials for Energy Storage in Supercapacitors and Capacitive Water Purification, 2016.
    [42] Y. Liu, S. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development, J Materials Today Advances 7 (2020) 100072.
    [43] B. Conway, H. Angerstein-Kozlowska, The electrochemical study of multiple-state adsorption in monolayers, J Accounts of Chemical Research 14 (1981) 49-56.
    [44] S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-e. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: from fundamental understanding to high power energy storage materials, J Chemical Reviews 120 (2020) 6738-6782.
    [45] X. Xu, X. Zhang, Y. Zhao, Y. Hu, An efficient hybrid supercapacitor based on battery-type MnS/reduced graphene oxide and capacitor-type biomass derived activated carbon, Journal of Materials Science: Materials in Electronics 29 (2018) 8410-8420.
    [46] C. Shi, J. Sun, Y. Pang, Y. Liu, B. Huang, B.-T. Liu, A new potassium dual-ion hybrid supercapacitor based on battery-type Ni (OH) 2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes, J Journal of Colloid Interface Science
    607 (2022) 462-469.
    [47] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, J Renewable Sustainable Energy Reviews
    101 (2019) 123-145.
    [48] B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes, J Energy Storage Materials 7 (2017) 32-39.
    [49] K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors, J RSC advances 4 (2014) 23485-23491.
    [50] N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors, J ACS nano 6 (2012) 1715-1723.
    [51] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte, J Applied Physics A 82 (2006) 567-573.
    [52] R. Chen, I.K. Puri, I. Zhitomirsky, High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors, J Ceramics International 44 (2018) 18007-18015.
    [53] Y. Lei, C. Fournier, J.-L. Pascal, F. Favier, Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors, J Microporous Mesoporous Materials
    110 (2008) 167-176.
    [54] X. Lu, G. Li, Y. Tong, A review of negative electrode materials for electrochemical supercapacitors, J Science China Technological Sciences 58 (2015) 1799-1808.
    [55] D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, D. Bélanger, The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor, J Journal of the Electrochemical Society 150 (2003) A747.
    [56] A. Jagadale, V. Kumbhar, D. Dhawale, C. Lokhande, Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co (OH) 2] thin film electrodes, J Electrochimica Acta 98 (2013) 32-38.
    [57] H. Xia, Y.S. Meng, G. Yuan, C. Cui, L. Lu, A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte, J Electrochemical Solid-State Letters
    15 (2012) A60.
    [58] D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors, J Nano Energy 8 (2014) 174-182.
    [59] H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance, J Chemical Engineering Journal 350 (2018) 523-533.
    [60] W. Jiang, F. Hu, Q. Yan, X. Wu, Investigation on electrochemical behaviors of NiCo 2 O 4 battery-type supercapacitor electrodes: the role of an aqueous electrolyte, J Inorganic Chemistry Frontiers 4 (2017) 1642-1648.
    [61] C. Guo, Y. Zhang, M. Yin, J. Shi, W. Zhang, X. Wang, Y. Wu, J. Ma, D. Yuan, C. Jia, Co3O4@ Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors, J Journal of Power Sources 485 (2021) 229315.
    [62] H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: A review, J Energy Storage Materials 28 (2020) 122-145.
    [63] T. Sumangala, M. Sreekanth, A. Rahaman, Applications of Supercapacitors, Handbook of Nanocomposite Supercapacitor Materials III, Springer2021, pp. 367-393.
    [64] J. Monteiro, N. Garrido, R. Fonseca, Efficient supercapacitor energy usage in mobile phones, 2011 IEEE International Conference on Consumer Electronics-Berlin (ICCE-Berlin), IEEE, 2011, pp. 318-321.
    [65] L. Zhang, W. Viola, T.L. Andrew, High energy density, super-deformable, garment-integrated microsupercapacitors for powering wearable electronics, J ACS applied materials interfaces
    10 (2018) 36834-36840.
    [66] S. Huang, X. Zhu, S. Sarkar, Y. Zhao, Challenges and opportunities for supercapacitors, J APL Materials 7 (2019) 100901.
    [67] K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II: Performance, Springer Nature2020.
    [68] S. Rawat, R.K. Mishra, T. Bhaskar, Biomass derived functional carbon materials for supercapacitor applications, J Chemosphere 286 (2022) 131961.
    [69] A. Rufer, P. Barrade, A supercapacitor-based energy-storage system for elevators with soft commutated interface, J IEEE Transactions on industry applications 38 (2002) 1151-1159.
    [70] F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, W. Huang, Recent developments of advanced micro-supercapacitors: Design, fabrication and applications, J Npj Flexible Electronics 4 (2020) 1-16.
    [71] L. Liu, Z. Niu, J. Chen, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations, J Chemical Society Reviews 45 (2016) 4340-4363.
    [72] J. Park, D.B. Ahn, J. Kim, E. Cha, B.-S. Bae, S.-Y. Lee, J.-U. Park, Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations, %J Science advances 5 (2019) eaay0764.
    [73] M. Weng, Y. Duan, P. Zhou, F. Huang, W. Zhang, L. Chen, Electric-fish-inspired actuator with integrated energy-storage function, J Nano Energy 68 (2020) 104365.
    [74] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, J Renewable sustainable energy reviews
    15 (2011) 1513-1524.
    [75] M. Tarhan, Renewable energy cooperatives: a review of demonstrated impacts and limitations, J Journal of Entrepreneurial Organizational Diversity
    4 (2015) 104-120.
    [76] C. Portet, P. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications, J Electrochimica Acta 49 (2004) 905-912.
    [77] J. Han, S. Wang, S. Zhu, C. Huang, Y. Yue, C. Mei, X. Xu, C. Xia, Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness, J ACS applied materials interfaces
    11 (2019) 44624-44635.
    [78] X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, X. Zhang, High-performance α-MnO2 nanowire electrode for supercapacitors, J Applied Energy 153 (2015) 94-100.
    [79] L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, J Scientific reports 3 (2013) 1-9.
    [80] M. Mastragostino, F. Soavi, Strategies for high-performance supercapacitors for HEV, J Journal of Power Sources 174 (2007) 89-93.
    [81] N.S.M. Nor, M. Deraman, R. Omar, E. Taer, Awitdrus, R. Farma, N. Basri, B. Dolah, Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches, AIP conference proceedings, American Institute of Physics, 2014, pp. 68-73.
    [82] H. Yu, Q. Tang, J. Wu, Y. Lin, L. Fan, M. Huang, J. Lin, Y. Li, F. Yu, Using eggshell membrane as a separator in supercapacitor, J Journal of Power Sources
    206 (2012) 463-468.
    [83] B. Szubzda, A. Szmaja, M. Ozimek, S. Mazurkiewicz, Polymer membranes as separators for supercapacitors, J Applied Physics A 117 (2014) 1801-1809.
    [84] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods, J Journal of energy engineering 139 (2013) 72-79.
    [85] J. Han, S. Wang, S. Zhu, C. Huang, Y. Yue, C. Mei, X. Xu, C. Xia, interfaces, Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness, J ACS applied materials 11 (2019) 44624-44635.
    [86] Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Biomass derived carbon as binder-free electrode materials for supercapacitors, J Carbon 155 (2019) 706-726.
    [87] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, J Chemical Society Reviews 38 (2009) 2520-2531.
    [88] A. Divyashree, G. Hegde, Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications–a review, J Rsc Advances 5 (2015) 88339-88352.
    [89] J. Juárez-Galán, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodríguez-Reinoso, Synthesis of activated carbon with highly developed “mesoporosity”, J Microporous Mesoporous Materials
    117 (2009) 519-521.
    [90] Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene‐based materials in supercapacitors, J small 8 (2012) 1805-1834.
    [91] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes–A review, J Journal of Materiomics 2 (2016) 37-54.
    [92] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, J Physical Chemistry Chemical Physics 13 (2011) 17615-17624.
    [93] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38 (2009) 2520-2531.
    [94] H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor, J Nanoscale research letters 5 (2010) 654-668.
    [95] P.R. Bandaru, nanotechnology, Electrical properties and applications of carbon nanotube structures, J Journal of nanoscience 7 (2007) 1239-1267.
    [96] S. Mayer, R. Pekala, J. Kaschmitter, The aerocapacitor: An electrochemical double‐layer energy‐storage device, J Journal of the Electrochemical Society 140 (1993) 446.
    [97] R. Saliger, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J Journal of Non-Crystalline Solids 225 (1998) 81-85.
    [98] K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes, J Journal of Power Sources 103 (2002) 305-309.
    [99] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J Journal of power sources 196 (2011) 1-12.
    [100] R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview, J Chemistry of materials 12 (2000) 608-622.
    [101] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, J Nano Energy 36 (2017) 268-285.
    [102] P.A. Basnayaka, Development of nanostructured graphene/conducting polymer composite materials for supercapacitor applications, University of South Florida2013.
    [103] Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application, J Polymer Science Series C 56 (2014) 144-153.
    [104] H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, Y. Kuang, The effect of the polyaniline morphology on the performance of polyaniline supercapacitors, J Journal of Solid State Electrochemistry 9 (2005) 574-580.
    [105] D. Dhawale, A. Vinu, C. Lokhande, Stable nanostructured polyaniline electrode for supercapacitor application, J Electrochimica Acta 56 (2011) 9482-9487.
    [106] P. Liu, J. Yan, Z. Guang, Y. Huang, X. Li, W. Huang, Recent advancements of polyaniline-based nanocomposites for supercapacitors, J Journal of Power Sources 424 (2019) 108-130.
    [107] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor, J Nano Energy 22 (2016) 422-438.
    [108] A. Deronzier, J.-C. Moutet, Polypyrrole films containing metal complexes: syntheses and applications, J Coordination Chemistry Reviews 147 (1996) 339-371.
    [109] V.V. Tat'yana, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, J Russian chemical reviews 66 (1997) 443.
    [110] K.S. Ryu, Y.-G. Lee, Y.-S. Hong, Y.J. Park, X. Wu, K.M. Kim, M.G. Kang, N.-G. Park, S.H. Chang, Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor, J Electrochimica acta 50 (2004) 843-847.
    [111] Q. Zhao, R. Jamal, L. Zhang, M. Wang, T. Abdiryim, The structure and properties of PEDOT synthesized by template-free solution method, J Nanoscale research letters 9 (2014) 1-9.
    [112] V. Castagnola, C. Bayon, E. Descamps, C. Bergaud, Morphology and conductivity of PEDOT layers produced by different electrochemical routes, J Synthetic metals 189 (2014) 7-16.
    [113] C. Chern, Emulsion polymerization mechanisms and kinetics, J Progress in polymer science 31 (2006) 443-486.
    [114] J. Friedrich, Polymers, Mechanisms of plasma polymerization–reviewed from a chemical point of view, J Plasma Processes 8 (2011) 783-802.
    [115] D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor, J Electrochemistry communications 9 (2007) 869-874.
    [116] H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes, Wiley Online Library, 2012.
    [117] C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, J Nano letters 6 (2006) 2690-2695.
    [118] R.K. Das, B. Liu, J.R. Reynolds, A.G. Rinzler, Engineered macroporosity in single-wall carbon nanotube films, J Nano letters 9 (2009) 677-683.
    [119] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renewable and sustainable energy reviews 58 (2016) 1189-1206.
    [120] S. Pusawale, P. Deshmukh, J. Gunjakar, C. Lokhande, SnO2–RuO2 composite films by chemical deposition for supercapacitor application, Materials Chemistry and Physics 139 (2013) 416-422.
    [121] Y.-G. Wang, Z.-D. Wang, Y.-Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes, Electrochimica Acta 50 (2005) 5641-5646.
    [122] J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Enhanced supercapacitor performance of MnO2 by atomic doping, Angewandte Chemie International Edition 52 (2013) 1664-1667.
    [123] W. Guo, C. Yu, S. Li, Z. Wang, J. Yu, H. Huang, J. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives, Nano Energy 57 (2019) 459-472.
    [124] M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO 2-based nanostructures for high-performance supercapacitors, Journal of Materials Chemistry A 3 (2015) 21380-21423.
    [125] V. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors, Journal of Power Sources 327 (2016) 297-318.
    [126] Y. Gao, D. Wu, T. Wang, D. Jia, W. Xia, Y. Lv, Y. Cao, Y. Tan, P. Liu, One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor, Electrochimica Acta 191 (2016) 275-283.
    [127] J. Mei, T. Liao, G.A. Ayoko, J. Bell, Z. Sun, Cobalt oxide-based nanoarchitectures for electrochemical energy applications, Progress in Materials Science 103 (2019) 596-677.
    [128] C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W.D. Lou, Growth of ultrathin mesoporous Co 3 O 4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors, Energy & Environmental Science 5 (2012) 7883-7887.
    [129] S.M. Abad-Elwahad, A.F. Bukhzam, G. Mekhemer, A Study of the Precursor Variation on the Surface Characterization of Supported Cobalt Oxide Catalyst, American Journal of Materials Science 5 (2015) 1-5.
    [130] L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors, Materials Today 25 (2019) 35-65.
    [131] R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, Journal of Alloys and Compounds 734 (2018) 89-111.
    [132] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews 44 (2015) 7484-7539.
    [133] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Advanced Energy Materials 4 (2014) 1300816.
    [134] Q. Gao, L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy & Environmental Science 5 (2012) 9611-9617.
    [135] M. Ata, S. Ghosh, I. Zhitomirsky, Electrostatic assembly of composite supercapacitor electrodes, triggered by charged dispersants, Journal of Materials Chemistry A 4 (2016) 17857-17865.
    [136] M. Ho, P. Khiew, D. Isa, T. Tan, W. Chiu, C. Chia, A review of metal oxide composite electrode materials for electrochemical capacitors, Nano 9 (2014) 1430002.
    [137] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: A critical review, Nanoscale Advances 1 (2019) 3807-3835.
    [138] P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview, Electrochemical Energy Reviews 3 (2020) 155-186.
    [139] S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges, journal of energy storage 27 (2020) 101072.
    [140] H. Dai, G. Zhang, D. Rawach, C. Fu, C. Wang, X. Liu, M. Dubois, C. Lai, S. Sun, Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives, Energy Storage Materials 34 (2021) 320-355.
    [141] Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, G. Shen, Core–Shell CuCo2O4@ MnO2 nanowires on carbon fabrics as high‐performance materials for flexible, all‐solid‐state, electrochemical capacitors, ChemElectroChem 1 (2014) 559-564.
    [142] S. Zhang, N. Pan, Supercapacitors performance evaluation, Advanced Energy Materials 5 (2015) 1401401.
    [143] B. Dong, B.-L. He, C.-L. Xu, H.-L. Li, Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Materials Science and Engineering: B 143 (2007) 7-13.
    [144] M. Mirzaee, C. Dehghanian, K.S. Bokati, One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor, Journal of Electroanalytical Chemistry 813 (2018) 152-162.
    [145] P. Kharade, S. Chavan, D. Salunkhe, P. Joshi, S. Mane, S. Kulkarni, Synthesis and characterization of PANI/MnO2 bi-layered electrode and its electrochemical supercapacitor properties, Materials Research Bulletin 52 (2014) 37-41.
    [146] W. Zhou, R. Apkarian, Z.L. Wang, D. Joy, Fundamentals of scanning electron microscopy (SEM), Scanning microscopy for nanotechnology, Springer2006, pp. 1-40.
    [147] K. Vernon-Parry, Scanning electron microscopy: an introduction, III-Vs Review 13 (2000) 40-44.
    [148] D.B. Williams, C.B. Carter, The transmission electron microscope, Transmission electron microscopy, Springer1996, pp. 3-17.
    [149] D.E. Newbury*, N.W. Ritchie, Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative?, Scanning 35 (2013) 141-168.
    [150] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry 45 (2015) 289-299.
    [151] A. Dutta, Fourier transform infrared spectroscopy, Spectroscopic methods for nanomaterials characterization (2017) 73-93.
    [152] F.A. Stevie, C.L. Donley, Introduction to x-ray photoelectron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 38 (2020) 063204.
    [153] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education 95 (2018) 197-206.
    [154] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, Journal of Chemical Education 60 (1983) 702.
    [155] M.Z. Iqbal, U. Aziz, Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices, Journal of Energy Storage 46 (2022) 103823.
    [156] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, The Journal of Physical Chemistry C 122 (2018) 194-206.
    [157] J.-G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Progress in Materials Science 74 (2015) 51-124.
    [158] D. Ramimoghadam, S. Bagheri, S.B. Abd Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials 368 (2014) 207-229.
    [159] M. Mecklenburg, A. Schuchardt, Y.K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, K.J.A.M. Schulte, Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance, 24 (2012) 3486-3490.
    [160] V. Augustyn, P. Simon, B.J.E. Dunn, E. Science, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, 7 (2014) 1597-1614.
    [161] D.P. Dubal, O. Ayyad, V. Ruiz, P.J.C.S.R. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, 44 (2015) 1777-1790.
    [162] W. Jiang, F. Hu, Q. Yan, X.J.I.C.F. Wu, Investigation on electrochemical behaviors of NiCo 2 O 4 battery-type supercapacitor electrodes: the role of an aqueous electrolyte, 4 (2017) 1642-1648.
    [163] C. Ferreira, S. Aeiyach, J.J. Aaron, P.J.E.A. Lacaze, Electrosynthesis of strongly adherent polypyrrole coatings on iron and mild steel in aqueous media, 41 (1996) 1801-1809.
    [164] R. Qian, J. Qiu, D.J.S.M. Shen, Conducting polypyrrole electrochemically prepared from aqueous solutions, 18 (1987) 13-18.
    [165] M. González, S.J.C.s. Saidman, Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention, 53 (2011) 276-282.
    [166] I. Fernández, M. Trueba, C. Núñez, J.J.R.C.C.Q. Rieumont, Electropolymerization of pyrrole from aqueous solutions on austenitic stainless steel electrodes, 33 (2002) 121-125.
    [167] D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D.J.J.o.M.C. Lokhande, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor, 22 (2012) 3044-3052.
    [168] R.C. Peres, J. Pernaut, M.A.J.J.o.P.S.P.A.P.C. De Paoli, Polypyrrole/dodecylsulfate: Effects of different synthesis conditions, 29 (1991) 225-231.
    [169] N. Sheng, M. Ueda, T.J.P.i.O.C. Ohtsuka, The formation of polypyrrole film on zinc-coated AZ91D alloy under constant current characterized by Raman spectroscopy, 76 (2013) 328-334.
    [170] J.-K. Chang, M.-T. Lee, C.-W. Cheng, W.-T. Tsai, M.-J. Deng, Y.-C. Hsieh, I.-W.J.J.o.M.C. Sun, Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium–dicyanamide ionic liquid, 19 (2009) 3732-3738.
    [171] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.J.N.l. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, 11 (2011) 4438-4442.
    [172] J. Li, L. Cui, X.J.A.S.S. Zhang, Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor, 256 (2010) 4339-4343.
    [173] L. Yuan, C. Wan, L.J.I.J.o.E.S. Zhao, Facial in-situ synthesis of MnO2/PPy composite for supercapacitor, 10 (2015) 9456-9465.
    [174] T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D.J.A.P.A. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, 82 (2006) 599-606.
    [175] X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y.J.E.A. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, 89 (2013) 523-529.
    [176] Y. Yang, L. Xiao, Y. Zhao, F.J.I.J.o.E.S. Wang, Hydrothermal synthesis and electrochemical characterization of a-MnO2 nanorods as cathode material for lithium batteries, 3 (2008) 67-74.
    [177] P.K. Nayak, N.J.E. Munichandraiah, S.-S. Letters, Simultaneous electrodeposition of MnO2 and Mn (OH) 2 for supercapacitor studies, 12 (2009) A115-A119.
    [178] M. Deng, X. Yang, M. Silke, W. Qiu, M. Xu, G. Borghs, H.J.S. Chen, A.B. Chemical, Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes, 158 (2011) 176-184.
    [179] C.-C. Hu, Y.-T. Wu, K.-H.J.C.o.M. Chang, Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: determinant influence of oxidants, 20 (2008) 2890-2894.
    [180] N. Larabi-Gruet, S. Peulon, A. Lacroix, A.J.E.A. Chausse, Studies of electrodeposition from Mn (II) species of thin layers of birnessite onto transparent semiconductor, 53 (2008) 7281-7287.
    [181] A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff, S.J.T.J.o.P.C.C. Fiechter, Evaluation of MnO x, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water, 118 (2014) 14073-14081.
    [182] S. Wencheng, J.O.J.S.m. Iroh, Effects of electrochemical process parameters on the synthesis and properties of polypyrrole coatings on steel, 95 (1998) 159-167.
    [183] T.T. Debelo, M. Ujihara, Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior, Journal of Electroanalytical Chemistry 859 (2020) 113825.
    [184] G.-r. Fu, Z. Hu, L. Xie, X.-q. Jin, Y.-l. Xie, Y.-x. Wang, Z.-y. Zhang, Y.-y. Yang, H.-y.J.I.J.E.S. Wu, Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor, 4 (2009) 1052.
    [185] B.C. Nath, K.J. Mohan, R. Barua, G.A. Ahmed, S.K.J.J.o.P. Dolui, P.A. Chemistry, Dimensionally integrated α-MnO2/Carbon black binary complex as platinum free counter electrode for dye sensitized solar cell, 348 (2017) 33-40.
    [186] O. Khani, F. Nemati, H. Farrokhi, M.J.S.M. Jazirehpour, Synthesis and characterization of electromagnetic properties of polypyrrole nanorods prepared via self-reactive MnO2 template, 220 (2016) 567-572.
    [187] S.S. Shinde, G.S. Gund, V.S. Kumbhar, B.H. Patil, C.D.J.E.P.J. Lokhande, Novel chemical synthesis of polypyrrole thin film electrodes for supercapacitor application, 49 (2013) 3734-3739.
    [188] M. Ananth, S. Pethkar, K.J.J.o.p.s. Dakshinamurthi, Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes—an FTIR study, 75 (1998) 278-282.
    [189] C. Yuan, B. Gao, L. Su, X.J.J.o.c. Zhang, i. science, Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors, 322 (2008) 545-550.
    [190] J. Mo, S.M. Steen III, F.-Y. Zhang, T.J. Toops, M.P. Brady, J.B.J.I.J.o.H.E. Green Jr, Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell, 40 (2015) 12506-12511.
    [191] S. Liang, F. Teng, G. Bulgan, R. Zong, Y.J.T.J.o.P.C.C. Zhu, Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation, 112 (2008) 5307-5315.
    [192] E. Garfias-García, M. Romero-Romo, M. Ramírez-Silva, J. Morales, M.J.J.o.E.C. Palomar-Pardavé, Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions, 613 (2008) 67-79.
    [193] G.A. Snook, C. Peng, D.J. Fray, G.Z.J.E.c. Chen, Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films, 9 (2007) 83-88.
    [194] J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z.J.E.A. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors, 55 (2010) 6973-6978.
    [195] D. Maddison, J.J.S.m. Unsworth, Optimization of synthesis conditions of polypyrrole from aqueous solutions, 30 (1989) 47-55.
    [196] I. Fernández, M. Trueba, C. Nunez, J.J.S. Rieumont, C. Technology, Some features of the overoxidation of polypyrrole synthesized on austenitic stainless steel electrodes in aqueous nitrate solutions, 191 (2005) 134-139.
    [197] Y. Li, R.J.E.a. Qian, Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions, 45 (2000) 1727-1731.
    [198] H. Jiang, J. Ma, C.J.C.c. Li, Hierarchical porous NiCo 2 O 4 nanowires for high-rate supercapacitors, 48 (2012) 4465-4467.
    [199] G. Hu, C. Tang, C. Li, H. Li, Y. Wang, H.J.J.o.T.E.S. Gong, The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances, 158 (2011) A695-A699.
    [200] Z. Liu, F. Liang, N. Zhang, Y.J.I.J.O.E.S. Liu, Preparation of Manganese Dioxide/Polypyrrole Composite by W/O Miniemulsion and Its Electrochemical Performance, 13 (2018) 6584-6597.
    [201] S. Hashmi, H.J.I. Updahyaya, MnO 2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors, 8 (2002) 272-277.
    [202] Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H.J.J.o.P.S. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate, 337 (2017) 45-53.
    [203] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L.J.T.J.o.P.C.C. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, 122 (2017) 194-206.
    [204] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C.J.N.E. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor, 22 (2016) 422-438.
    [205] W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y.J.A.F.M. Chen, Ternary hybrids of amorphous nickel hydroxide–carbon nanotube‐conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life, 25 (2015) 1063-1073.
    [206] P. Kulkarni, S. Nataraj, R.G. Balakrishna, D. Nagaraju, M.J.J.o.M.C.A. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices, 5 (2017) 22040-22094.
    [207] S. Rahimi, S. Shahrokhian, H.J.J.o.E.C. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, 810 (2018) 78-85.
    [208] B. Pandit, E.S. Goda, M.H.A. Elella, A. ur Rehman, S.E. Hong, S.R. Rondiya, P. Barkataki, S.F. Shaikh, A.M. Al-Enizi, S.M.J.J.o.E.C. El-Bahy, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors, 65 (2022) 116-126.
    [209] E.S. Goda, A. ur Rehman, B. Pandit, A.A.-S. Eissa, S.E. Hong, K.R.J.C.E.J. Yoon, Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors, 428 (2022) 132470.
    [210] E.S. Goda, S.E. Hong, K.R.J.J.o.A. Yoon, Compounds, Facile synthesis of Cu-PBA nanocubes/graphene oxide composite as binder-free electrodes for supercapacitor, 859 (2021) 157868.
    [211] E.S. Goda, S. Lee, M. Sohail, K.R.J.J.o.E.C. Yoon, Prussian blue and its analogues as advanced supercapacitor electrodes, 50 (2020) 206-229.
    [212] B.S. Singu, E.S. Goda, K.R.J.J.o.I. Yoon, E. Chemistry, Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials, 97 (2021) 239-249.
    [213] Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jiang, A.J.S. Yu, A.B. Chemical, Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance, 209 (2015) 889-897.
    [214] N. Kamely, M.J.J.o.N.R. Ujihara, Confeito-like Au/TiO 2 nanocomposite: synthesis and plasmon-induced photocatalysis, 20 (2018) 1-10.
    [215] W. Weydanz, M. Wohlfahrt-Mehrens, R.A.J.J.o.p.s. Huggins, A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries, 81 (1999) 237-242.
    [216] L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang, Z. Wang, B. Lu, J.J.I. Zhou, Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn‐ion battery, 3 (2021) 1028-1036.
    [217] C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan, Y. Gan, P. Liang, J. Zhang, H. Wang, Y.J.C.E.J. Wang, Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices, 400 (2020) 125955.
    [218] J. Yang, Y. Yang, J. Lan, Y. Yu, X.J.J.o.E.C. Yang, Polyaniline-manganese dioxide-carbon nanofiber ternary composites with enhanced electrochemical performance for supercapacitors, 843 (2019) 22-30.
    [219] T.A. Geleta, T.J.B.o.t.C.S.o.J. Imae, Influence of additives on zinc oxide-based dye sensitized solar cells, 93 (2020) 611-620.
    [220] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L.J.I.j.o.h.e. Zhang, Progress of electrochemical capacitor electrode materials: A review, 34 (2009) 4889-4899.
    [221] J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, X.J.J.o.M.C.A. Dong, Hybrid NiCo 2 S 4@ MnO 2 heterostructures for high-performance supercapacitor electrodes, 3 (2015) 1258-1264.
    [222] Q. Ye, Y. Xiang, T.J.E.A. Ping, Sol-Gel approach for controllable synthesis and electrochemical properties of NiCo 2 O 4 crystals as electrode materials for application in supercapacitors, 56 (2011) 7517-7522.
    [223] J. Zhang, L.-B. Kong, B. Wang, Y.-C. Luo, L.J.S.M. Kang, In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors, 159 (2009) 260-266.
    [224] W. Tang, Y. Hou, X. Wang, Y. Bai, Y. Zhu, H. Sun, Y. Yue, Y. Wu, K. Zhu, R.J.J.o.P.S. Holze, A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors, 197 (2012) 330-333.
    [225] W. Ma, Q. Shi, H. Nan, Q. Hu, X. Zheng, B. Geng, X.J.R.A. Zhang, Hierarchical ZnO@ MnO 2@ PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage, 5 (2015) 39864-39869.
    [226] A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib, C.J.J.o.P.S. Julien, Polypyrrole-covered MnO2 as electrode material for supercapacitor, 240 (2013) 267-272.
    [227] J. Ji, X. Zhang, J. Liu, L. Peng, C. Chen, Z. Huang, L. Li, X. Yu, S.J.M.S. Shang, E. B, Assembly of polypyrrole nanotube@ MnO2 composites with an improved electrochemical capacitance, 198 (2015) 51-56.
    [228] W. Yao, H. Zhou, Y.J.J.o.p.s. Lu, Synthesis and property of novel MnO2@ polypyrrole coaxial nanotubes as electrode material for supercapacitors, 241 (2013) 359-366.
    [229] X. Fan, X. Wang, G. Li, A. Yu, Z.J.J.o.P.S. Chen, High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors, 326 (2016) 357-364.
    [230] T.T. Debelo, M.J.J.o.E.C. Ujihara, Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior, 859 (2020) 113825.
    [231] P.K. Nayak, N.J.E. Munichandraiah, S.S. Letters, Simultaneous electrodeposition of MnO2 and Mn (OH) 2 for supercapacitor studies, 12 (2009) A115.
    [232] T.T. Debelo, M. Ujihara, Electrodeposition of binder-free polypyrrole on a three-dimensional flower-like nanosheet of manganese oxides containing pyrrole derivative for supercapacitor electrode, Materials Chemistry and Physics 278 (2022) 125690.
    [233] N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, M.J.E.p.j. Omastová, Polyaniline and polypyrrole: A comparative study of the preparation, 43 (2007) 2331-2341.
    [234] H. Rasouli, L. Naji, M.G.J.J.o.E.C. Hosseini, The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices, 836 (2019) 165-175.
    [235] G. Fu, Z. Hu, L. Xie, X.-q. Jin, Y.-l. Xie, Y.-x. Wang, Z.-y. Zhang, Y.-y. Yang, H.-y.J.I.J.E.S. Wu, Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor, 4 (2009) 1052.
    [236] N. Ballav, A. Maity, S.B.J.C.E.J. Mishra, High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution, 198 (2012) 536-546.
    [237] J.O. Iroh, G.A.J.C.P.B.E. Wood, Control of carbon fiber-polypyrrole interphases by aqueous electrochemical process, 29 (1998) 181-188.
    [238] A.H.P. de Oliveira, M.L.F. Nascimento, H.P.J.M.R. de Oliveira, Carbon nanotube@ MnO2@ polypyrrole composites: chemical synthesis, characterization and application in supercapacitors, 19 (2016) 1080-1087.
    [239] L. Feng, Y. Zhang, R. Wang, Y. Zhang, W. Bai, S. Ji, Z. Xuan, J. Yang, Z. Zheng, H.J.N.r.l. Guan, Preparation of PPy-coated MnO 2 hybrid micromaterials and their improved cyclic performance as anode for lithium-ion batteries, 12 (2017) 1-10.
    [240] M. Yang, S.B. Hong, B.G.J.J.o.E.C. Choi, Hierarchical MnO2 nanosheet arrays on carbon fiber for high-performance pseudocapacitors, 759 (2015) 95-100.
    [241] B. Dong, B.-L. He, C.-L. Xu, H.-L.J.M.S. Li, E. B, Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, 143 (2007) 7-13.
    [242] R. Rajagopal, K.-S.J.J.o.E.C. Ryu, Homogeneous MnO2@ TiO2 core-shell nanostructure for high performance supercapacitor and Li-ion battery applications, 856 (2020) 113669.
    [243] T. Wang, D. Song, H. Zhao, J. Chen, C. Zhao, L. Chen, W. Chen, J. Zhou, E.J.J.o.P.S. Xie, Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible supercapacitors, 274 (2015) 709-717.
    [244] M. Zhi, A. Manivannan, F. Meng, N.J.J.o.P.S. Wu, Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors, 208 (2012) 345-353.
    [245] J. Li, H. Xie, Y. Li, J. Liu, Z.J.J.o.P.S. Li, Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors, 196 (2011) 10775-10781.
    [246] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L.J.T.J.o.P.C.C. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, 122 (2018) 194-206.
    [247] X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y.J.A.a.m. Yamauchi, interfaces, Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors, 9 (2017) 38737-38744.
    [248] X. Du, X. Hao, Z. Wang, X. Ma, G. Guan, A. Abuliti, G. Ma, S.J.S.m. Liu, Highly stable polypyrrole film prepared by unipolar pulse electro-polymerization method as electrode for electrochemical supercapacitor, 175 (2013) 138-145.
    [249] Y. Zhou, Z.-Y. Qin, L. Li, Y. Zhang, Y.-L. Wei, L.-F. Wang, M.-F.J.E.A. Zhu, Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials, 55 (2010) 3904-3908.
    [250] Y. Bai, W. Wang, R. Wang, J. Sun, L.J.J.o.M.C.A. Gao, Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors, 3 (2015) 12530-12538.
    [251] R. Ramya, M.J.J.o.C.S. Sangaranarayanan, Analysis of polypyrrole-coated stainless steel electrodes—Estimation of specific capacitances and construction of equivalent circuits, 120 (2008) 25-31.
    [252] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S.J.J.o.P.S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid, 190 (2009) 578-586.
    [253] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L.J.J.o.c.e. Dempsey, A practical beginner’s guide to cyclic voltammetry, 95 (2018) 197-206.
    [254] Z. Wen, W. She, Y. Li, R.J.J.o.M.C.A. Che, Paramecium-like α-MnO 2 hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method, 2 (2014) 20729-20738.
    [255] J. Li, L. Cui, X. Zhang, Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor, Applied Surface Science 256 (2010) 4339-4343.
    [256] A. Naiknaware, J. Chavan, S. Kaldate, A.A. Yadav, Studies on spray deposited Ni doped Mn3O4 electrodes for supercapacitor applications, Journal of Alloys and Compounds 774 (2019) 787-794.
    [257] N.K. Sidhu, A. Rastogi, Nanoscale blended MnO2 nanoparticles in electro-polymerized polypyrrole conducting polymer for energy storage in supercapacitors, MRS Online Proceedings Library (OPL) 1552 (2013) 11-16.
    [258] P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, Core-double-shell, carbon nanotube@ polypyrrole@ MnO2 sponge as freestanding, compressible supercapacitor electrode, ACS applied materials & interfaces 6 (2014) 5228-5234.
    [259] M. Aghazadeh, M. Asadi, M.R. Ganjali, P. Norouzi, B. Sabour, M. Emamalizadeh, Template-free preparation of vertically-aligned Mn3O4 nanorods as high supercapacitive performance electrode material, Thin Solid Films 634 (2017) 24-32.
    [260] Y. Tian, D. Li, J. Liu, H. Wang, J. Zhang, Y. Zheng, T. Liu, S. Hou, Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors, Electrochimica Acta 257 (2017) 155-164.
    [261] L. Yuan, C. Wan, L. Zhao, Facial in-situ synthesis of MnO2/PPy composite for supercapacitor, International Journal of Electrochemical Science 10 (2015) 9456-9465.
    [262] G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochimica Acta 92 (2013) 205-215.
    [263] R. Rajagopal, K.-S. Ryu, Homogeneous MnO2@ TiO2 core-shell nanostructure for high performance supercapacitor and Li-ion battery applications, Journal of Electroanalytical Chemistry 856 (2020) 113669.
    [264] S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications, Energy & Fuels 27 (2013) 3508-3515.
    [265] H. Lee, H. Kim, M.S. Cho, J. Choi, Y.J.E.A. Lee, Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications, 56 (2011) 7460-7466.

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 2027/08/03 (校外網路)
    全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE