簡易檢索 / 詳目顯示

研究生: Adem Ali Muhabie
Adem Ali Muhabie
論文名稱: Synthesis, Characterizations and Application of Ultrathin 2D Nanomaterials/Supramolecular Polymer Nanocomposites
Synthesis, Characterizations and Application of Ultrathin 2D Nanomaterials/Supramolecular Polymer Nanocomposites
指導教授: 邱智瑋
Chih Wei Chiu
鄭智嘉
Chih Chia Cheng
口試委員: Arnold Chang-Mou Yan
Arnold Chang-Mou Yan
Ching-Hwa Ho
Ching-Hwa Ho
Jem-Kun Chen
Jem-Kun Chen
Ru-Jong Jeng
Ru-Jong Jeng
Chi-Hsien Huang
Chi-Hsien Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 160
中文關鍵詞: 2D nanomaterialssupramolecular polymerphase transition behaviorself assemblymicelle, lamellar microstructurehydrogen bond
外文關鍵詞: phase transition behavior, micelle, lamellar microstructure, stimuli responsive behavior, sonication assisted liquid exfoliation, non covalent interaction, drug loading,encapsulation,release
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • bstract
    Large-scale production of two-dimensional nanomaterials have being promising potential applications in various fields such as; electronic devices, transistors, energy storage devices and catalysis, drug delivery carrier, biosensor, bimolecular imaging, resulting from they have various unique electronic, optical, mechanical and chemical properties. In here, A simple, reliable and effective sonicated-liquid phase exfoliation method for direct exfoliation of hexagonal boron nitride (h-BN) and tungsten diselenide (WSe2) into few-layered nanosheets has been successfully developed by employing a low molecular weight adenine functionalized poly propylene glycol diacrylate supramolecular polymer (A-PPG) which formed with noncovalent assembly of hydrogen bond networks upon association of monomers. pH/temperature dual-responsive BN-APPG was fabricated for well controllable, rapid, effective drug delivery carrier. To exfoliate bulk layered materials with supramolecular polymers, adenine end-capped supramolecular polymer A-PPG was synthesized as exfoliation and stabilization agent using Michael addition reaction of adenine with PPG diacrylate. A-PPG self-assembled into either long-range ordered lamellar or micelle-like structures on the surface of ultrathin h-BN and WSe2 nanosheet because of the noncovalent interactions between A-PPG and nanosheets. Particularly, the number of exfoliated nanosheets exfoliation could be controlled by adjusting the amount of A-PPG incorporated and sonication time. Single layer BN nanosheets exhibited ordered hexagonal lattice microstructure whereas single layer WSe2 nanosheets is unique as it is chemically homogeneous, but exhibits both a semiconducting 2H crystal structure and metallic 1T phase corresponding to honey comb and ordered hexagonal microstructure respectively. A-PPG has the capacity to form two different lamellar morphology such as contracted and extended lamellar microstructures on the surface of coexisted metallic 1T-phase and semiconducting 2H-phase WSe2 nanosheets, respectively due to different physiochemical, electrical and optical properties of the two phase of WSe2 sheet. Dark brown (WSe2) and white (BN) THF/water dispersion solution were observed after sonication at room temperature and no obvious signs of precipitation for long time, implying the stability of dispersed nanosheets with the attachment of A-PPG which act as a strong stabilizing against aggregation and re-stacking of single/few-layer nanosheets, also indicating self-assembled of A-PPG used to manipulate the physical and morphological properties of exfoliated ultrathin nanosheets. These newly developed BN/A-PPG and WSe2/A-PPG nanocomposites exhibited excellent liquid–solid phase transition behavior and few-layer thickness with good dispersion, which means that they could store thermal energy (heat) while heating and release heat while freezing. Thermal stability and reliability behavior of A-PPG was improved with increasing the loading amount of BN or WSe2 nanosheets due to the optimum thermal stability of those nanosheets and self-assemble structure-forming capacity of A-PPG supramolecular polymer. A-PPG-functionalized BN nanosheets was nontoxic and biocompatibility against murine macrophage cell line, RAW 264.7 and human breast adenocarcinoma cell line,
    MCF 7 Cell using the MTT assay indicated that the synthesized APPG–BN nanosheets were suitable for use as drug carriers up to high concentration. A-PPG displayed a well-defined phase transition behavior at its lower critical solution temperature (LCST), however, increasing the concentration of the composite, the LCST of the BN/A-PPG composite significantly reduced. Hence, the BN/A-PPG revealed temperature responsive behavior as function temperature change. In addition, the pH-responsible behavior of BN/A-PPG have been confirmed based on protonation/deprotonation behavior and particle size variation in different pH value. Overall, pH and temperature responsive behavior of multifunctional BN/A-PPG composite may be controlled by the tuning its composition, can be a novel multi-functional nanoscale material provide access to dual pH/temperature-responsive well control drug delivery system. Then, Doxorubicin (DOX) was used as a model anticancer drug to investigate the loading and temperature/pH-dependent triggered drug-releasing behavior of BN/A-PPG complexes. It was observed that the loading capacities of DOX on BN/A-PPG all increased as the function of DOX concentrations and reaches 36.17 % at DOX concentration. DOX loading mechanism over the hetrostructure of BN/A-PPG composite can be confirmed which is electrostatic interaction between positively charged adsorbent and negatively positive surface. In addition, strong specific π−π stacking between aromatic rings of DOX and aromatic BN nanosheets as well as hydrogen bonding between their functional groups possibly occurred. DOX releasing was investigated at different pH and temperature. Then, the controlled drug-release behavior of DOX@ BN/A-PPG complexes, which display an optimistic, rapid, well controllable and effective dox releasing capability. The newly developed method of producing exfoliated WSe2/BN provides a useful conceptual and potential framework for developing WSe2/BN-based multifunctional nanocomposites to extend their application for the next generation of transistors, energy storage devices and catalysis, drug delivery carrier, biosensor, bimolecular imaging, thermoconductive devices and solution-processed semiconductors devices. Particularly, the newly developed dual pH and temperature-responsive BN/A-PPG nanocarrier has highly promising potential for controlled release drug delivery systems.


    Abstract
    Large-scale production of two-dimensional nanomaterials have being promising potential applications in various fields such as; electronic devices, transistors, energy storage devices and catalysis, drug delivery carrier, biosensor, bimolecular imaging, resulting from they have various unique electronic, optical, mechanical and chemical properties. In here, A simple, reliable and effective sonicated-liquid phase exfoliation method for direct exfoliation of hexagonal boron nitride (h-BN) and tungsten diselenide (WSe2) into few-layered nanosheets has been successfully developed by employing a low molecular weight adenine functionalized poly propylene glycol diacrylate supramolecular polymer (A-PPG) which formed with noncovalent assembly of hydrogen bond networks upon association of monomers. pH/temperature dual-responsive BN-APPG was fabricated for well controllable, rapid, effective drug delivery carrier. To exfoliate bulk layered materials with supramolecular polymers, adenine end-capped supramolecular polymer A-PPG was synthesized as exfoliation and stabilization agent using Michael addition reaction of adenine with PPG diacrylate. A-PPG self-assembled into either long-range ordered lamellar or micelle-like structures on the surface of ultrathin h-BN and WSe2 nanosheet because of the noncovalent interactions between A-PPG and nanosheets. Particularly, the number of exfoliated nanosheets exfoliation could be controlled by adjusting the amount of A-PPG incorporated and sonication time. Single layer BN nanosheets exhibited ordered hexagonal lattice microstructure whereas single layer WSe2 nanosheets is unique as it is chemically homogeneous, but exhibits both a semiconducting 2H crystal structure and metallic 1T phase corresponding to honey comb and ordered hexagonal microstructure respectively. A-PPG has the capacity to form two different lamellar morphology such as contracted and extended lamellar microstructures on the surface of coexisted metallic 1T-phase and semiconducting 2H-phase WSe2 nanosheets, respectively due to different physiochemical, electrical and optical properties of the two phase of WSe2 sheet. Dark brown (WSe2) and white (BN) THF/water dispersion solution were observed after sonication at room temperature and no obvious signs of precipitation for long time, implying the stability of dispersed nanosheets with the attachment of A-PPG which act as a strong stabilizing against aggregation and re-stacking of single/few-layer nanosheets, also indicating self-assembled of A-PPG used to manipulate the physical and morphological properties of exfoliated ultrathin nanosheets. These newly developed BN/A-PPG and WSe2/A-PPG nanocomposites exhibited excellent liquid–solid phase transition behavior and few-layer thickness with good dispersion, which means that they could store thermal energy (heat) while heating and release heat while freezing. Thermal stability and reliability behavior of A-PPG was improved with increasing the loading amount of BN or WSe2 nanosheets due to the optimum thermal stability of those nanosheets and self-assemble structure-forming capacity of A-PPG supramolecular polymer. A-PPG-functionalized BN nanosheets was nontoxic and biocompatibility against murine macrophage cell line, RAW 264.7 and human breast adenocarcinoma cell line,
    MCF 7 Cell using the MTT assay indicated that the synthesized APPG–BN nanosheets were suitable for use as drug carriers up to high concentration. A-PPG displayed a well-defined phase transition behavior at its lower critical solution temperature (LCST), however, increasing the concentration of the composite, the LCST of the BN/A-PPG composite significantly reduced. Hence, the BN/A-PPG revealed temperature responsive behavior as function temperature change. In addition, the pH-responsible behavior of BN/A-PPG have been confirmed based on protonation/deprotonation behavior and particle size variation in different pH value. Overall, pH and temperature responsive behavior of multifunctional BN/A-PPG composite may be controlled by the tuning its composition, can be a novel multi-functional nanoscale material provide access to dual pH/temperature-responsive well control drug delivery system. Then, Doxorubicin (DOX) was used as a model anticancer drug to investigate the loading and temperature/pH-dependent triggered drug-releasing behavior of BN/A-PPG complexes. It was observed that the loading capacities of DOX on BN/A-PPG all increased as the function of DOX concentrations and reaches 36.17 % at DOX concentration. DOX loading mechanism over the hetrostructure of BN/A-PPG composite can be confirmed which is electrostatic interaction between positively charged adsorbent and negatively positive surface. In addition, strong specific π−π stacking between aromatic rings of DOX and aromatic BN nanosheets as well as hydrogen bonding between their functional groups possibly occurred. DOX releasing was investigated at different pH and temperature. Then, the controlled drug-release behavior of DOX@ BN/A-PPG complexes, which display an optimistic, rapid, well controllable and effective dox releasing capability. The newly developed method of producing exfoliated WSe2/BN provides a useful conceptual and potential framework for developing WSe2/BN-based multifunctional nanocomposites to extend their application for the next generation of transistors, energy storage devices and catalysis, drug delivery carrier, biosensor, bimolecular imaging, thermoconductive devices and solution-processed semiconductors devices. Particularly, the newly developed dual pH and temperature-responsive BN/A-PPG nanocarrier has highly promising potential for controlled release drug delivery systems.

    Table of Content 1 Introduction 1 2 Literature Review 7 2.1 Ultrathin 2D Nanosheet 7 2.2 Unique properties of 2D Nanosheet Materials 7 2.2.1 Hexagonal Boron Nitride 10 2.2.2 Carbon-Based Nanomaterial 11 2.2.3 Transition Metal Dichalcogenides 12 2.3 Solvents Effect for Exfoliation of 2D Nanomaterials 16 2.4 Aromatic Functionalized Polymer for Exfoliation 17 2.4.1 Nucleobase-Supramolecular Polymer for Exfoliation 18 2.5 Production Methods of 2D Nanomaterials 22 2.5.1 Sonication–Assisted Exfoliation 22 2.5.2 Ion Intercalation Exfoliation 24 2.5.3 Micromechanical Cleavage 25 2.5.4 Chemical Vapor Deposition 26 2.5.5 Wet-Chemical Method 27 2.6 Applications of Ultrathin 2D Nanosheet 28 2.6.1 Catalysis 29 2.6.2 Biomedical Application 29 2.6.3 Energy storage and conversion 31 2.6.4 Environmental Protection 32 2.7 Objective of the Research 33 3 Experimental Methods 35 3.1 Materials and Reagents 35 3.2 Experimental procedure 35 3.3 Dispersion Techniques for 2D Nanomaterials 40 3.3.1 Sonication 40 3.3.2 Shear Exfoliation 41 3.3.3 Centrifugation 41 3.4 Characterization Methods 42 3.4.1 Fourier Transform Infrared 42 3.4.2 Ultraviolet-Visible Spectroscopy 42 3.4.3 Raman Spectroscopy 43 3.4.4 Transmission Electron Microscopy 44 3.4.5 Scanning Electron Microscopy 45 3.4.6 Atomic Force Microscopy 47 3.4.7 X-Ray Photoelectron Spectroscopy 48 3.4.8 Fluorescence Spectroscopy 49 3.4.9 X-Ray Diffraction 50 3.4.10 Differential Scanning Calorimetry 51 3.4.11 Thermogravimetric Analyzer 52 3.4.12 Dynamic Light Scattering 52 4 Results and Discussions 54 4.1 Non-Covalently Functionalized Boron Nitride Mediated By a Highly Self-Assembled Supramolecular Polymer 54 4.1.1 Introduction 54 4.1.2 Results and Discussions 56 4.1.3 Conclusions 80 4.2 Dual pH and Temperature Responsive Boron Nitride Nanosheet/Polymeric Micelles for Drug Release Application 81 4.2.1 Introduction 81 4.2.2 Results and Discussions 83 4.2.3 Conclusions 103 4.3 Dynamic Tungsten Diselenide Nanomaterials: Supramolecular Assembly-Induced Structural Transition over Exfoliated Two-Dimensional Nanosheets 104 4.3.1 Introduction 104 4.3.2 Results and Discussions 106 4.3.3 Conclusion 124 5 Summary and Outlook 125 5.1 Summary 125 5.2 Outlook 127 6 References 129

    References
    1. Ji, Y.; Pan, C.; Zhang, M.; Long, S.; Lian, X.; Miao, F.; Hui, F.; Shi, Y.; Larcher, L.; Wu, E., Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Applied Physics Letters 2016, 108 (1), 012905
    2. Weinstein, I.; Vokhmintsev, A.; Minin, M.; Kartashov, V.; Chernetsky, I., Spectral and kinetic features of thermoluminescence in hexagonal boron nitride powder after UV-irradiation. Radiation Measurements 2013, 56, 236-239.
    3. Haubner, R.; Herrmann, M.; Lux, B.; Petzow, G.; Weissenbacher, R.; Wilhelm, M., High performance non-oxide ceramics II. Springer: 2003; Vol. 102, 1-171
    4. Li, J.; Huang, Y.; Liu, Z.; Zhang, J.; Liu, X.; Luo, H.; Ma, Y.; Xu, X.; Lu, Y.; Lin, J., Chemical activation of boron nitride fibers for improved cationic dye removal performance. Journal of Materials Chemistry A 2015, 3 (15), 8185-8193.
    5. Ciofani, G.; Danti, S.; Genchi, G. G.; Mazzolai, B.; Mattoli, V., Boron nitride nanotubes: biocompatibility and potential spill‐over in nanomedicine. Small 2013, 9 (9‐10), 1672-1685.
    6. Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D., Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS nano 2014, 8 (6), 6123-6130.
    7. Sukhorukova, I. V.; Zhitnyak, I. Y.; Kovalskii, A. M.; Matveev, A. T.; Lebedev, O. I.; Li, X.; Gloushankova, N. A.; Golberg, D.; Shtansky, D. V., Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS applied materials & interfaces 2015, 7 (31), 17217-17225.
    8. Lu, T.; Wang, L.; Jiang, Y.; Huang, C., Hexagonal boron nitride nanoplates as emerging biological nanovectors and their potential applications in biomedicine. Journal of Materials Chemistry B 2016, 4 (36), 6103-6110.
    9. Yuan, F.; Jiao, W.; Yang, F.; Liu, W.; Liu, J.; Xu, Z.; Wang, R., Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation. Journal of Materials Chemistry C 2017, 5 (25), 6359-6368.
    10. Wang, J.; Wu, Y.; Xue, Y.; Liu, D.; Wang, X.; Hu, X.; Bando, Y.; Lei, W., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. Journal of Materials Chemistry C 2018,1363-1369
    11. Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C. R., Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society 2009, 131 (3), 890-891.
    12. Zhi, C.; Bando, Y.; Tang, C.; Golberg, D., Boron nitride nanotubes. Materials Science and Engineering: R: Reports 2010, 70 (3-6), 92-111.
    13. Feng, S.; Zhang, H.; Zhi, C.; Gao, X.-D.; Nakanishi, H., pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. International journal of nanomedicine 2018, 13, 641-651
    14. Nasir, M. Z. M.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M., Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers To Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano 2017, 11 (6), 5774-5784.
    15. Yu, X.; Sivula, K., Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe2. Chemistry of Materials 2017, 29 (16), 6863-6875.
    16. Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; Sindoro, M.; Zhang, H., Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9), 6225-6331.
    17. Tsai, M.-Y.; Zhang, S.; Campbell, P. M.; Dasari, R. R.; Ba, X.; Tarasov, A.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M., Solution-Processed Doping of Trilayer WSe2 with Redox-Active Molecules. Chemistry of Materials 2017, 29 (17), 7296-7304.
    18. Muhabie, A. A.; Cheng, C.-C.; Huang, J.-J.; Liao, Z.-S.; Huang, S.-Y.; Chiu, C.-W.; Lee, D.-J., Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials 2017, 29 (19), 8513-8520.
    19. Magda, G. Z.; Pető, J.; Dobrik, G.; Hwang, C.; Biró, L. P.; Tapasztó, L., Exfoliation of large-area transition metal chalcogenide single layers. Scientific reports 2015, 5, 14714.
    20. Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X., Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials 2010, 22 (7), 2213-2218.
    21. Guo, X.; Shi, C.; Yang, G.; Wang, J.; Cai, Z.; Zhou, S., Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chemistry of Materials 2014, 26 (15), 4405-4418.
    22. Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L., Break-up of Two-Dimensional MnO2 Nanosheets Promotes Ultrasensitive pH-Triggered Theranostics of Cancer. Advanced Materials 2014, 26 (41), 7019-7026.
    23. Zhang, H.; Yan, T.; Xu, S.; Feng, S.; Huang, D.; Fujita, M.; Gao, X.-D., Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Materials Science and Engineering: C 2017, 73, 144-151.
    24. Strozyk, M. S.; Chanana, M.; Pastoriza‐Santos, I.; Pérez‐Juste, J.; Liz‐Marzán, L. M., Protein/polymer‐based dual‐responsive gold nanoparticles with pH‐dependent thermal sensitivity. Advanced Functional Materials 2012, 22 (7), 1436-1444.
    25. Zhou, Z.; Zhu, S.; Zhang, D., Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry 2007, 17 (23), 2428-2433.
    26. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y.-J.; Liu, H.; Huang, Y.-F.; Zhang, X.; Tan, W., Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS nano 2011, 5 (6), 5094-5099.
    27. Gebeyehu, B. T.; Huang, S.-Y.; Lee, A.-W.; Chen, J.-K.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules 2018, 51 (3), 1189-1197.
    28. Lei, Z.; Zhou, Y.; Wu, P., Simultaneous Exfoliation and Functionalization of MoSe2 Nanosheets to Prepare “Smart” Nanocomposite Hydrogels with Tunable Dual Stimuli‐Responsive Behavior. Small 2016, 12 (23), 3112-3118.
    29. Zhu, S.; Li, J.; Chen, Y.; Chen, Z.; Chen, C.; Li, Y.; Cui, Z.; Zhang, D., Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. Journal of Nanoparticle Research 2012, 14 (9), 1132-1143
    30. Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L., Water‐soluble poly (N‐isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Advanced Functional Materials 2011, 21 (14), 2754-2763.
    31. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters 2008, 8 (1), 36-41.
    32. Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L., Water-Soluble Poly(N-isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Advanced Functional Materials 2011, 21 (14), 2754-2763.
    33. Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V., Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science 2014, 39 (11), 1934-1972.
    34. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
    35. Bang, G. S.; Cho, S.; Son, N.; Shim, G. W.; Cho, B.-K.; Choi, S.-Y., DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. ACS applied materials & interfaces 2016, 8 (3), 1943-1950.
    36. Zhang, J.; Chen, Y.; Wang, X., Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy & Environmental Science 2015, 8 (11), 3092-3108.
    37. Ma, R.; Sasaki, T., Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality. Accounts of Chemical Research 2015, 48 (1), 136-143.
    38. Wang, Q.; O’Hare, D., Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews 2012, 112 (7), 4124-4155.
    39. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y., 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Advanced Materials 2014, 26 (7), 992-1005.
    40. Duan, H.; Yan, N.; Yu, R.; Chang, C.-R.; Zhou, G.; Hu, H.-S.; Rong, H.; Niu, Z.; Mao, J.; Asakura, H.; Tanaka, T.; Dyson, P. J.; Li, J.; Li, Y., Ultrathin rhodium nanosheets. Nature Communications 2014, 5, 3093.
    41. Lu, Q.; Zhao, M.; Chen, J.; Chen, B.; Tan, C.; Zhang, X.; Huang, Y.; Yang, J.; Cao, F.; Yu, Y.; Ping, J.; Zhang, Z.; Wu, X.-J.; Zhang, H., In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets. Small 2016, 12 (34), 4669-4674.
    42. Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T., A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chemistry 2014, 6, 774.
    43. Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z., Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small 2016, 12 (26), 3480-3502.
    44. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D., Silicene field-effect transistors operating at room temperature. Nature Nanotechnology 2015, 10, 227.
    45. Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H., Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band-Gap Transitions. Angewandte Chemie 2015, 127 (10), 3155-3158.
    46. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6, 183.
    47. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320 (5881), 1308-1308.
    48. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X., Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology 2016, 11, 218.
    49. Voiry, D.; Yang, J.; Chhowalla, M., Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Advanced Materials 2016, 28 (29), 6197-6206.
    50. Cai, L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X., Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2. Nano Letters 2017, 17 (6), 3854-3861.
    51. Liu, L.; Feng, Y. P.; Shen, Z. X., Structural and electronic properties of h-BN. Physical Review B 2003, 68 (10), 104102.
    52. Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z.; Liu, X., Controlling wettability of boron nitride nanotube films and improved cell proliferation. The Journal of Physical Chemistry C 2012, 116 (34), 18334-18339.
    53. Xu, L.; McGraw, J.-W.; Gao, F.; Grundy, M.; Ye, Z.; Gu, Z.; Shepherd, J. L., Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ethylene copolymer composites. The Journal of Physical Chemistry C 2013, 117 (20), 10730-10742.
    54. Voiry, D.; Mohite, A.; Chhowalla, M., Phase engineering of transition metal dichalcogenides. Chemical Society Reviews 2015, 44 (9), 2702-2712.
    55. Gu, J.; Yang, X.; Lv, Z.; Li, N.; Liang, C.; Zhang, Q., Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. International Journal of Heat and Mass Transfer 2016, 92, 15-22.
    56. Lei, B.; Pan, Y.; Hu, Z.; Zhang, J.; Xiang, D.; Zheng, Y.; Guo, R.; Han, C.; Wang, L.; Lu, J., Direct Observation of Semiconductor–Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization. ACS nano 2018, 12 (2), 2070-2077.
    57. Lu, C.; Liu, Y.; Ying, Y.; Liu, J., Comparison of MoS2, WS2, and Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2017, 33 (2), 630-637.
    58. Cheng, P.; Sun, K.; Hu, Y. H., Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. Nano Letters 2016, 16 (1), 572-576.
    59. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A., Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2014, 136 (40), 14121-14127.
    60. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M., Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2. ACS Nano 2012, 6 (8), 7311-7317.
    61. Brivio, J.; Alexander, D. T. L.; Kis, A., Ripples and Layers in Ultrathin MoS2 Membranes. Nano Letters 2011, 11 (12), 5148-5153.
    62. Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L., Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials 2017, 29 (1), 1603276-n/a.
    63. Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H., Recent advances in ultrathin two-dimensional nanomaterials. Chemical reviews 2017, 117 (9), 6225-6331.
    64. Hu, M.; Zhou, Y.; Nie, W.; Chen, P., Functionalized Graphene Nanosheets with Fewer Defects Prepared via Sodium Alginate Assisted Direct Exfoliation of Graphite in Aqueous Media for Lithium-Ion Batteries. ACS Applied Nano Materials 2018, 1 (4), 1985-1994.
    65. Zhang, W.; Li, Y.; Peng, S., Facile Synthesis of Graphene Sponge from Graphene Oxide for Efficient Dye-Sensitized H2 Evolution. ACS applied materials & interfaces 2016, 8 (24), 15187-15195.
    66. Amiri, A.; Naraghi, M.; Ahmadi, G.; Soleymaniha, M.; Shanbedi, M., A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem 2018,40-71
    67. Parviz, D.; Das, S.; Ahmed, H. T.; Irin, F.; Bhattacharia, S.; Green, M. J., Dispersions of non-covalently functionalized graphene with minimal stabilizer. Acs Nano 2012, 6 (10), 8857-8867.
    68. Cheng, C. C.; Liang, M. C.; Liao, Z. S.; Huang, J. J.; Lee, D. J., Self‐Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular bioscience 2017, 17 (5), 1600370.
    69. Cheng, C.-C.; Huang, J.-J.; Muhable, A. A.; Liao, Z.-S.; Huang, S.-Y.; Lee, S.-C.; Chiu, C.-W.; Lee, D.-J., Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polymer Chemistry 2017, 8 (15), 2292-2298.
    70. Cheng, P.; Sun, K.; Hu, Y. H., Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano letters 2015, 16 (1), 572-576.
    71. Qi, X.; Zhang, H.-B.; Xu, J.; Wu, X.; Yang, D.; Qu, J.; Yu, Z.-Z., Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS applied materials & interfaces 2017, 9 (12), 11025-11034.
    72. Wang, X.; Wu, P., Aqueous Phase Exfoliation of Two-Dimensional Materials Assisted by Thermoresponsive Polymeric Ionic Liquid and Their Applications in Stimuli-Responsive Hydrogels and Highly Thermally Conductive Films. ACS applied materials & interfaces 2018, 10 (3), 2504-2514.
    73. Taghinejad, H.; Taghinejad, M.; Tarasov, A.; Tsai, M.-Y.; Hosseinnia, A. H.; Moradinejad, H.; Campbell, P. M.; Eftekhar, A. A.; Vogel, E. M.; Adibi, A., Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides. Acs Photonics 2016, 3 (4), 700-707.
    74. Nasir, M. Z. M.; Mayorga-Martinez, C. C.; Sofer, Z. k.; Pumera, M., Two-dimensional 1T-phase transition metal dichalcogenides as nanocarriers to enhance and stabilize enzyme activity for electrochemical pesticide detection. ACS nano 2017, 11 (6), 5774-5784.
    75. Ho, C.-H.; Chen, W.-H.; Tiong, K. K.; Lee, K.-Y.; Gloter, A.; Zobelli, A.; Stephan, O.; Tizei, L. H. G., Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of WSe2. ACS nano 2017, 11 (11), 11162-11168.
    76. Li, L. H.; Chen, Y.; Behan, G.; Zhang, H.; Petravic, M.; Glushenkov, A. M., Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. Journal of materials chemistry 2011, 21 (32), 11862-11866.
    77. Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X., Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters 2015, 15 (1), 709-713.
    78. Liu, B.; Ma, Y.; Zhang, A.; Chen, L.; Abbas, A. N.; Liu, Y.; Shen, C.; Wan, H.; Zhou, C., High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions. ACS Nano 2016, 10 (5), 5153-5160.
    79. Zheng, M.; Dong, H.; Xiao, Y.; Liu, S.; Hu, H.; Liang, Y.; Sun, L.; Liu, Y., Facile one-step and high-yield synthesis of few-layered and hierarchically porous boron nitride nanosheets. RSC Advances 2016, 6 (51), 45402-45409.
    80. Kuila, T.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013, 5 (1), 52-71.
    81. Tan, C.; Zhang, H., Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature communications 2015, 6, 7873.
    82. Arup Kumer, R.; Sung Young, P.; Insik, I., Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology 2015, 26 (10), 105601.
    83. Huang, C.; Chen, C.; Ye, X.; Ye, W.; Hu, J.; Xu, C.; Qiu, X., Stable colloidal boron nitride nanosheet dispersion and its potential application in catalysis. Journal of Materials Chemistry A 2013, 1 (39), 12192-12197.
    84. Firestein, K. L.; Leybo, D. V.; Steinman, A. E.; Kovalskii, A. M.; Matveev, A. T.; Manakhov, A. M.; Sukhorukova, I. V.; Slukin, P. V.; Fursova, N. K.; Ignatov, S. G., BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents. Beilstein journal of nanotechnology 2018, 9, 250.
    85. Huang, X.-W.; Wei, J.-J.; Liu, T.; Zhang, X.-L.; Bai, S.-M.; Yang, H.-H., Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale 2017, 9 (44), 17193-17198.
    86. Yang, J.; Qi, G.-Q.; Tang, L.-S.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B., Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage. Journal of Materials Chemistry A 2016, 4 (24), 9625-9634.
    87. Ma, Y.; Liu, B.; Zhang, A.; Chen, L.; Fathi, M.; Shen, C.; Abbas, A. N.; Ge, M.; Mecklenburg, M.; Zhou, C., Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. ACS Nano 2015, 9 (7), 7383-7391.
    88. Cui, X.; Ding, P.; Zhuang, N.; Shi, L.; Song, N.; Tang, S., Thermal Conductive and Mechanical Properties of Polymeric Composites Based on Solution-Exfoliated Boron Nitride and Graphene Nanosheets: A Morphology-Promoted Synergistic Effect. ACS applied materials & interfaces 2015, 7 (34), 19068-19075.
    89. Zhu, H.; Li, Y.; Fang, Z.; Xu, J.; Cao, F.; Wan, J.; Preston, C.; Yang, B.; Hu, L., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS nano 2014, 8 (4), 3606-3613.
    90. Kale, P. C.; Chaudhari, P. L., Removal of Reactive Blue 221 Dye from Textile Waste Water by Using Zinc Peroxide Nanoparticles. International Journal of Scientific Research and Management 2017, 5 (6).250-261
    91. San Keskin, N. O.; Celebioglu, A.; Uyar, T.; Tekinay, T., Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Industrial & Engineering Chemistry Research 2015, 54 (21), 5802-5809.
    92. Govindhan, P.; Pragathiswaran, C., Synthesis and characterization of TiO2@ SiO2–Ag nanocomposites towards photocatalytic degradation of rhodamine B and methylene blue. Journal of Materials Science: Materials in Electronics 2016, 27 (8), 8778-8785.
    93. Chandrasekaran, A. R.; Jia, C. Y.; Theng, C. S.; Muniandy, T.; Muralidharan, S.; Dhanaraj, S. A., Invitro studies and evaluation of metformin marketed tablets-Malaysia. 2011,5-8.
    94. Gollub, J. P.; Swinney, H. L., Onset of turbulence in a rotating fluid. Physical Review Letters 1975, 35 (14), 927-930.
    95. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C., Identification of individual and few layers of WS 2 using Raman Spectroscopy. Scientific reports 2013, 3, 1755.
    96. Williams, D.; Carter, C., Transmission Electron Microscopy: A Textbook for Materials Science. Number v. 3 in Cambridge library collection. Springer: 2009.1-805.
    97. Blom, J.; Soenen, H.; Katsiki, A.; Van den Brande, N.; Rahier, H.; van den Bergh, W., Investigation of the bulk and surface microstructure of bitumen by atomic force microscopy. Construction and Building Materials 2018, 177, 158-169.
    98. Wilson, R. A.; Bullen, H. A., Basic Theory-Atomic Force Microscopy (AFM). Department of Chemistry, Northern Kentucky University, Highland Heights, KY 2011, 41099,15-700
    99. Hu, S.; Yang, J.; Liu, W.; Dong, Y.; Cao, S.; Liu, J., Prediction of formation of cubic boron nitride by construction of temperature–pressure phase diagram at the nanoscale. Journal of Solid State Chemistry 2011, 184 (7), 1598-1602.
    100. Xu, M.; Liang, T.; Shi, M.; Chen, H., Graphene-Like Two-Dimensional Materials. Chemical Reviews 2013, 113 (5), 3766-3798.
    101. Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letters 2010, 10 (8), 3209-3215.
    102. Ji, Y. F.; Pan, C. B.; Zhang, M. Y.; Long, S. B.; Lian, X. J.; Miao, F.; Hui, F.; Shi, Y. Y.; Larcher, L.; Wu, E.; Lanza, M., Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Applied Physics Letters 2016, 108 (1), 012905.
    103. Weinstein, I. A.; Vokhmintsev, A. S.; Minin, M. G.; Kartashov, V. V.; Chernetsky, I. V., Spectral and kinetic features of thermoluminescence in hexagonal boron nitride powder after UV-irradiation. Radiation Measurements 2013, 56, 236-239.
    104. Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B., Boron Nitrides — Properties, Synthesis and Applications. In High Performance Non-Oxide Ceramics II, Jansen, M., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2002, pp 1-45.
    105. Li, J.; Huang, Y.; Liu, Z.; Zhang, J.; Liu, X.; Luo, H.; Ma, Y.; Xu, X.; Lu, Y.; Lin, J.; Zou, J.; Tang, C., Chemical activation of boron nitride fibers for improved cationic dye removal performance. Journal of Materials Chemistry A 2015, 3 (15), 8185-8193.
    106. Li, J.; Lin, J.; Xu, X.; Zhang, X.; Xue, Y.; Mi, J.; Mo, Z.; Fan, Y.; Hu, L.; Yang, X.; Zhang, J.; Meng, F.; Yuan, S.; Tang, C., Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology 2013, 24 (15), 155603.
    107. Wang, M.; Li, M.; Xu, L.; Wang, L.; Ju, Z.; Li, G.; Qian, Y., High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation. Catalysis Science & Technology 2011, 1 (7), 1159-1165.
    108. Wang, X.; Pakdel, A.; Zhang, J.; Weng, Q.; Zhai, T.; Zhi, C.; Golberg, D.; Bando, Y., Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Research Letters 2012, 7 (1), 662-662.
    109. Pykal, M.; Šafářová, K.; Machalová Šišková, K.; Jurečka, P.; Bourlinos, A. B.; Zbořil, R.; Otyepka, M., Lipid Enhanced Exfoliation for Production of Graphene Nanosheets. The Journal of Physical Chemistry C 2013, 117 (22), 11800-11803.
    110. Haar, S.; Bruna, M.; Lian, J. X.; Tomarchio, F.; Olivier, Y.; Mazzaro, R.; Morandi, V.; Moran, J.; Ferrari, A. C.; Beljonne, D.; Ciesielski, A.; Samorì, P., Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. The Journal of Physical Chemistry Letters 2016, 7 (14), 2714-2721.
    111. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857.
    112. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chen, J.-K.; Yen, Y.-C.; Lee, D.-J., Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. Nanoscale 2016, 8 (2), 723-728.
    113. Sun, X.; Zhang, Q.; Medina, M. A.; Lee, K. O., Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB). Energy Conversion and Management 2014, 83, 73-78.
    114. Xin, G.; Sun, H.; Scott, S. M.; Yao, T.; Lu, F.; Shao, D.; Hu, T.; Wang, G.; Ran, G.; Lian, J., Advanced Phase Change Composite by Thermally Annealed Defect-Free Graphene for Thermal Energy Storage. ACS applied materials & interfaces 2014, 6 (17), 15262-15271.
    115. Velraj, R.; Seeniraj, R. V.; Hafner, B.; Faber, C.; Schwarzer, K., HEAT TRANSFER ENHANCEMENT IN A LATENT HEAT STORAGE SYSTEM1Paper presented at the ISES Solar World Congress, Taejon, South Korea, 24–29 August 1997.1. Solar Energy 1999, 65 (3), 171-180.
    116. Cao, H.; Qi, F.; Liu, R.; Wang, F.; Zhang, C.; Zhang, X.; Chai, Y.; Zhai, L., The influence of hydrogen bonding on N-methyldiethanolamine-extended polyurethane solid-solid phase change materials for energy storage. RSC Advances 2017, 7 (19), 11244-11252.
    117. Shanti, R.; Hadi, A.; Salim, Y.; Chee, S.; Ramesh, S.; Ramesh, K., Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC Advances 2017, 7 (1), 112-120.
    118. Asha, S.; Thirumal, M.; Kavitha, A.; Pillai, C., Synthesis and curing studies of PPG based telechelic urethane methacrylic macromonomers. European Polymer Journal 2005, 41 (1), 23-33.
    119. Malucelli, G.; Gozzelino, G.; Ferrero, F.; Bongiovanni, R.; Priola, A., Synthesis of poly (propylene‐glycol‐diacrylates) and properties of the photocured networks. Journal of Applied Polymer Science 1997, 65 (3), 491-497.
    120. Thangasamy, P.; Santhanam, M.; Sathish, M., Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS applied materials & interfaces 2016, 8 (29), 18647-18651.
    121. Lin, Y.; Williams, T. V.; Connell, J. W., Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters 2010, 1 (1), 277-283.
    122. Lin, Y.; Williams, T. V.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W., Defect Functionalization of Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry C 2010, 114 (41), 17434-17439.
    123. Deshmukh, K.; Joshi, G. M., Embedded capacitor applications of graphene oxide reinforced poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) composites. Journal of Materials Science: Materials in Electronics 2015, 26 (8), 5896-5909.
    124. Lu, F.; Wang, F.; Gao, W.; Huang, X.; Zhang, X.; Li, Y., Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation. Materials Express 2013, 3 (2), 144-150.
    125. Zhi, C.; Bando, Y.; Tang, C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D., Characteristics of Boron Nitride Nanotube–Polyaniline Composites. Angewandte Chemie International Edition 2005, 44 (48), 7929-7932.
    126. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Blake, P., Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7 (4), 465-468.
    127. May, P.; Khan, U.; Hughes, J. M.; Coleman, J. N., Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. The Journal of Physical Chemistry C 2012, 116 (20), 11393-11400.
    128. Cheng, C.-C.; Chang, F.-C.; Dai, S. A.; Lin, Y.-L.; Lee, D.-J., Bio-complementary supramolecular polymers with effective self-healing functionality. RSC Advances 2015, 5 (110), 90466-90472.
    129. Shimizu, T.; Iwaura, R.; Masuda, M.; Hanada, T.; Yase, K., Internucleobase-Interaction-Directed Self-Assembly of Nanofibers from Homo- and Heteroditopic 1,ω-Nucleobase Bolaamphiphiles. Journal of the American Chemical Society 2001, 123 (25), 5947-5955.
    130. Sushrutha, S. R.; Hota, R.; Natarajan, S., Adenine-Based Coordination Polymers: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry 2016, 2016 (18), 2962-2974.
    131. Zhu, W.; Gao, X.; Li, Q.; Li, H.; Chao, Y.; Li, M.; Mahurin, S. M.; Li, H.; Zhu, H.; Dai, S., Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets. Angewandte Chemie 2016, 128 (36), 10924-10928.
    132. Furukawa, M.; Tanaka, H.; Kawai, T., Formation mechanism of low-dimensional superstructure of adenine molecules and its control by chemical modification: a low-temperature scanning tunneling microscopy study. Surface Science 2000, 445 (1), 1-10.
    133. Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C., Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition. ACS applied materials & interfaces 2016, 8 (34), 22637-22646.
    134. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5, 263.
    135. Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V., Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Physical Review B 2010, 82 (7), 075415.
    136. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L., Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 2014, 8 (3), 2880-2888.
    137. Amiri, A.; Shanbedi, M.; Rafieerad, A. R.; Rashidi, M. M.; Zaharinie, T.; Zubir, M. N. M.; Kazi, S. N.; Chew, B. T., Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. Journal of the Taiwan Institute of Chemical Engineers 2017, 71 (Supplement C), 480-493.
    138. Mamdouh, W.; Dong, M.; Xu, S.; Rauls, E.; Besenbacher, F., Supramolecular Nanopatterns Self-Assembled by Adenine−Thymine Quartets at the Liquid/Solid Interface. Journal of the American Chemical Society 2006, 128 (40), 13305-13311.
    139. Kyogoku, Y.; Lord, R. C.; Rich, A., An infrared study of hydrogen bonding between adenine and uracil derivatives in chloroform solution. Journal of the American Chemical Society 1967, 89 (3), 496-504.
    140. McNutt, A.; Haq, S.; Raval, R., RAIRS investigations on the orientation and intermolecular interactions of adenine on Cu(110). Surface Science 2003, 531 (2), 131-144.
    141. Zhang, W.; Cao, Y.; Tian, P.; Guo, F.; Tian, Y.; Zheng, W.; Ji, X.; Liu, J., Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants. ACS applied materials & interfaces 2016, 8 (47), 32440-32449.
    142. Zhang, X.; Huang, Z.; Ma, B.; Wen, R.; Zhang, M.; Huang, Y.; Fang, M.; Liu, Y.-g.; Wu, X., Polyethylene glycol/Cu/SiO2 form stable composite phase change materials: preparation, characterization, and thermal conductivity enhancement. RSC Advances 2016, 6 (63), 58740-58748.
    143. Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N., Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. The Journal of Physical Chemistry C 2011, 115 (17), 8753-8758.
    144. Hayashi, M.; Tournilhac, F., Thermal stability enhancement of hydrogen bonded semicrystalline thermoplastics achieved by combination of aramide chemistry and supramolecular chemistry. Polymer Chemistry 2017, 8 (2), 461-471.
    145. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chu, Y.-L.; Wang, Y.-S.; Lee, D.-J.; Chuang, W.-T.; Xin, Z., Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. RSC Advances 2015, 5 (93), 76451-76457.
    146. Cheng, C.-C.; Chang, F.-C.; Chen, J.-K.; Wang, T.-Y.; Lee, D.-J., High-efficiency self-healing materials based on supramolecular polymer networks. RSC Advances 2015, 5 (122), 101148-101154.
    147. Zhang, S.; Wang, S.; Zhang, J.; Jiang, Y.; Ji, Q.; Zhang, Z.; Wang, Z., Increasing Phase Change Latent Heat of Stearic Acid via Nanocapsule Interface Confinement. The Journal of Physical Chemistry C 2013, 117 (44), 23412-23417.
    148. Wu, Y.; Xue, Y.; Qin, S.; Liu, D.; Wang, X.; Hu, X.; Li, J.; Wang, X.; Bando, Y.; Golberg, D., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS applied materials & interfaces 2017, 9 (49), 43163-43170.
    149. Xiong, J.; Zhu, W.; Li, H.; Ding, W.; Chao, Y.; Wu, P.; Xun, S.; Zhang, M.; Li, H., Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry 2015, 17 (3), 1647-1656.
    150. Zhang, S.; Lian, G.; Si, H.; Wang, J.; Zhang, X.; Wang, Q.; Cui, D., Ultrathin BN nanosheets with zigzag edge: one-step chemical synthesis, applications in wastewater treatment and preparation of highly thermal-conductive BN-polymer composites. Journal of Materials Chemistry A 2013, 1 (16), 5105-5112.
    151. Xiong, J.; Yang, L.; Chao, Y.; Pang, J.; Wu, P.; Zhang, M.; Zhu, W.; Li, H., A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance. Green Chemistry 2016, 18 (10), 3040-3047.
    152. Wang, J.; Hao, J.; Liu, D.; Qin, S.; Portehault, D.; Li, Y.; Chen, Y.; Lei, W., Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. ACS Energy Letters 2017, 2 (2), 306-312.
    153. Fan, D.; Feng, J.; Liu, J.; Gao, T.; Ye, Z.; Chen, M.; Lv, X., Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. Ceramics International 2016, 42 (6), 7155-7163.
    154. Muhabie, A. A.; Ho, C.-H.; Gebeyehu, B. T.; Huang, S.-Y.; Chiu, C.-W.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dynamic Tungsten Diselenide Nanomaterials: Supramolecular Assembly-Induced Structural Transition over Exfoliated Two-Dimensional Nanosheets. Chemical Science 2018,5452-5460.
    155. Roy, A. K.; Park, S. Y.; In, I., Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology 2015, 26 (10), 105601.
    156. Feng, T.; Ai, X.; Ong, H.; Zhao, Y., Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS applied materials & interfaces 2016, 8 (29), 18732-18740.
    157. Zhitnyak, I. Y.; Bychkov, I. N.; Sukhorukova, I. V.; Kovalskii, A. M.; Firestein, K. L.; Golberg, D.; Gloushankova, N. A.; Shtansky, D. V., Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS applied materials & interfaces 2017, 9 (38), 32498-32508.
    158. Shimizu, T.; Iwaura, R.; Masuda, M.; Hanada, T.; Yase, K., Internucleobase-interaction-directed self-assembly of nanofibers from homo-and heteroditopic 1, ω-nucleobase bolaamphiphiles. Journal of the American Chemical Society 2001, 123 (25), 5947-5955.
    159. Zou, M.; Zhang, J.; Zhu, H.; Du, M.; Wang, Q.; Zhang, M.; Zhang, X., A 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. Journal of Materials Chemistry A 2015, 3 (23), 12149-12153.
    160. Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M., Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano 2014, 8 (12), 12185-12198.
    161. Muhabie, A. A.; Ho, C.-H.; Gebeyehu, B. T.; Huang, S.-Y.; Chiu, C.-W.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science 2018, 9 (24), 5452-5460.
    162. Wang, Y.; Song, T.; Zhang, P.; Huang, T.; Wang, T.; Wang, T.; Zeng, H., Gas-Exfoliation Assisted Fabrication of Porous Graphene Nanosheets Derived from Plumeria rubra for Highly Efficient Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering 2018,11536-11546.
    163. Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters 2014, 15 (1), 709-713.
    164. Furukawa, M.; Tanaka, H.; Kawai, T., Scanning tunneling microscopy observation of two-dimensional self-assembly formation of adenine molecules on Cu (111) surfaces. Surface science 1997, 392 (1-3), L33-L39.
    165. Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N. B.; D’Emanuele, A., The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics 2003, 252 (1), 263-266.
    166. Feng, S.; Zhang, H.; Zhi, C.; Gao, X.-D.; Nakanishi, H., pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. International Journal of Nanomedicine 2018, 13, 641-652.
    167. Heyde, M.; Schacht, E., In: Phosphazenes: A Worldwide Insight ISBN 1-59033-423-X Editors: M. Gleria and R. De Jaeger, pp. 367-398© 2004 Nova Science Publishers, Inc. Phosphazenes: A Worldwide Insight 2004, 367.
    168. Xia, Y.; Burke, N. A. D.; Stöver, H. D. H., End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules 2006, 39 (6), 2275-2283.
    169. Guoyong, X.; Wei-Tai, W.; Yusong, W.; Wenmin, P.; Pinghua, W.; Qingren, Z.; Fei, L., Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer. Nanotechnology 2006, 17 (10), 2458.
    170. Dai, S.; Tam, K., Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly (propylene glycol) s and sodium dodecyl sulfate. Langmuir 2004, 20 (6), 2177-2183.
    171. Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L., Break‐up of Two‐Dimensional MnO2 Nanosheets Promotes Ultrasensitive pH‐Triggered Theranostics of Cancer. Advanced Materials 2014, 26 (41), 7019-7026.
    172. Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS nano 2007, 1 (1), 50-56.
    173. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z., Drug delivery with PEGylated MoS2 nano‐sheets for combined photothermal and chemotherapy of cancer. Advanced Materials 2014, 26 (21), 3433-3440.
    174. Suryaprakash, S.; Li, M.; Lao, Y.-H.; Wang, H.-X.; Leong, K. W., Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon 2018, 129, 863-868.
    175. Nakayama, M.; Okano, T.; Miyazaki, T.; Kohori, F.; Sakai, K.; Yokoyama, M., Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. Journal of Controlled Release 2006, 115 (1), 46-56.
    176. Bae, Y. H.; Okano, T.; Hsu, R.; Kim, S. W., Thermo‐sensitive polymers as on‐off switches for drug release. Die Makromolekulare Chemie, Rapid Communications 1987, 8 (10), 481-485.
    177. Suryaprakash, S.; Li, M.; Lao, Y.-H.; Wang, H.-X.; Leong, K. W., Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon 2017.
    178. Ma, Y.; Zhang, G.; Li, L.; Yu, H.; Liu, J.; Wang, C.; Chu, Y.; Zhuo, R.; Jiang, X., Temperature and pH dual‐sensitive polyaspartamide derivatives for antitumor drug delivery. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (7), 879-888.
    179. Cheng, Z.; Ou, L.; Zhou, X.; Li, F.; Jia, X.; Zhang, Y.; Liu, X.; Li, Y.; Ward, C. A.; Melo, L. G., Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy 2008, 16 (3), 571-579.
    180. Tsai, M.-Y.; Tarasov, A.; Hesabi, Z. R.; Taghinejad, H.; Campbell, P. M.; Joiner, C. A.; Adibi, A.; Vogel, E. M., Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors. ACS applied materials & interfaces 2015, 7 (23), 12850-12855.
    181. Joiner, C. A.; Campbell, P. M.; Tarasov, A. A.; Beatty, B. R.; Perini, C. J.; Tsai, M.-Y.; Ready, W. J.; Vogel, E. M., Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials. ACS applied materials & interfaces 2016, 8 (13), 8702-8709.
    182. Pant, A.; Mutlu, Z.; Wickramaratne, D.; Cai, H.; Lake, R. K.; Ozkan, C.; Tongay, S., Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale 2016, 8 (7), 3870-3887.
    183. Jariwala, D.; Davoyan, A. R.; Tagliabue, G.; Sherrott, M. C.; Wong, J.; Atwater, H. A., Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics. Nano Letters 2016, 16 (9), 5482-5487.
    184. Liu, Z.; Zhao, H.; Li, N.; Zhang, Y.; Zhang, X.; Du, Y., Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe2 layers anchored on graphene sheets. Inorganic Chemistry Frontiers 2016, 3 (2), 313-319.
    185. Zou, M.; Chen, J.; Xiao, L.; Zhu, H.; Yang, T.; Zhang, M.; Du, M., WSe2 and W(SexS1-x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (35), 18090-18097.
    186. Akinwande, D.; Petrone, N.; Hone, J., Two-dimensional flexible nanoelectronics. Nature Communications 2014, 5, 5678.
    187. Li, H.; Peng, Z.; Qian, J.; Wang, M.; Wang, C.; Fu, X., C Fibers@WSe2 Nanoplates Core–Shell Composite: Highly Efficient Solar-Driven Photocatalyst. ACS applied materials & interfaces 2017, 9 (34), 28704-28715.
    188. Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M., Atomic layers of hybridized boron nitride and graphene domains. Nature Materials 2010, 9, 430.
    189. Coehoorn, R.; Haas, C.; de Groot, R. A., Electronic structure of MoSe2,MoS2, and WSe2. II. The nature of the optical band gaps. Physical Review B 1987, 35 (12), 6203-6206.
    190. Beal, A. R.; Knights, J. C.; Liang, W. Y., Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. Journal of Physics C: Solid State Physics 1972, 5 (24), 3540.
    191. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7 (1), 791-797.
    192. Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5 (20), 9677-9683.
    193. Wang, X.; Chen, X.; Zhou, Y.; Park, C.; An, C.; Zhou, Y.; Zhang, R.; Gu, C.; Yang, W.; Yang, Z., Pressure-induced iso-structural phase transition and metallization in WSe2. Scientific Reports 2017, 7, 46694.
    194. Kang, D.-H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W.-S.; Jang, Y. H.; Lee, S.; Park, J.-H., Controllable Nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane. ACS Nano 2015, 9 (2), 1099-1107.
    195. Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials 2013, 12, 850.
    196. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013, 3, 1755.
    197. Zhu, W.; Gao, X.; Li, Q.; Li, H.; Chao, Y.; Li, M.; Mahurin, S. M.; Li, H.; Zhu, H.; Dai, S., Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets. Angewandte Chemie International Edition 2016, 55 (36), 10766-10770.
    198. Antunez, P. D.; Webber, D. H.; Brutchey, R. L., Solution-Phase Synthesis of Highly Conductive Tungsten Diselenide Nanosheets. Chemistry of Materials 2013, 25 (12), 2385-2387.
    199. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M., Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters 2013, 13 (12), 6222-6227.
    200. Anto Jeffery, A.; Nethravathi, C.; Rajamathi, M., Two-Dimensional Nanosheets and Layered Hybrids of MoS2 and WS2 through Exfoliation of Ammoniated MS2 (M = Mo,W). The Journal of Physical Chemistry C 2014, 118 (2), 1386-1396.
    201. Selhorst, R. C.; Puodziukynaite, E.; Dewey, J. A.; Wang, P.; Barnes, M. D.; Ramasubramaniam, A.; Emrick, T., Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS2 nanomaterials. Chemical Science 2016, 7 (7), 4698-4705.
    202. Gebeyehu, B. T.; Huang, S.-Y.; Lee, A.-W.; Chen, J.-K.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules 2018,1189-1197
    203. Henckel, D. A.; Lenz, O.; Cossairt, B. M., Effect of Ligand Coverage on Hydrogen Evolution Catalyzed by Colloidal WSe2. ACS Catalysis 2017, 7 (4), 2815-2820.
    204. Wang, X.; Chen, Y.; Zheng, B.; Qi, F.; He, J.; Li, P.; Zhang, W., Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochimica Acta 2016, 222, 1293-1299.
    205. Morishita, T.; Okamoto, H., Facile Exfoliation and Noncovalent Superacid Functionalization of Boron Nitride Nanosheets and Their Use for Highly Thermally Conductive and Electrically Insulating Polymer Nanocomposites. ACS applied materials & interfaces 2016, 8 (40), 27064-27073.
    206. Cheng, L., Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110) Surfaces. Materials 2016, 9 (12), 1016.
    207. Cheng, C.-C.; Wang, J.-H.; Chuang, W.-T.; Liao, Z.-S.; Huang, J.-J.; Huang, S.-Y.; Fan, W.-L.; Lee, D.-J., Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry 2017, 8 (21), 3294-3299.
    208. Zhao, C.; Ang, J. M.; Liu, Z.; Lu, X., Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chemical Engineering Journal 2017, 330, 462-469.
    209. Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J., Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications 2015, 6, 8311.
    210. Ambrosi, A.; Sofer, Z.; Pumera, M., 2H [rightward arrow] 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications 2015, 51 (40), 8450-8453.
    211. Booth, H., R. M. Silverstein, G. C. Bassler and T. C. Morrill. Spectrometric identification of organic compounds. Wiley, Chichester, 1991, pp. x + 419, £50.25 (cloth), ISBN 0 471 63404 2. Magnetic Resonance in Chemistry 1992, 30 (4), 364-364.

    無法下載圖示 全文公開日期 2023/12/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE