簡易檢索 / 詳目顯示

研究生: 胡晉豪
Jinhao - Hu
論文名稱: 以氧化錳與碳化電紡纖維為電極材料應用於非對稱超級電容器
Asymmetric Supercapacitor Containing Carbon Nanotube-Embedded Polyacrylonitrile-Based Carbon Nanofiber and MnO2 As Electrodes
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 郭俞麟
Yu-Lin Kuo
梁元彰
none
白益豪
none
林群耀
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 非對稱超級電容電化學性能氧化錳靜電紡織
外文關鍵詞: Asymmetric supercapacitors, electrochemical behavior, electrospinning, MnO2
相關次數: 點閱:262下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非對稱超級電容電池是一種兼具高能量密度與高功率密度的新型儲能元件。它主要通過雙電層電容與擬電容兩種方式進行“雙功能”儲能,結合了擬電容和雙電層電容器兩者的優點,成為近年來研究的熱點之一。
    正極部分我們採用水熱法製備不同形貌結構的氧化錳(MnO2)並研究了不同形貌結構對MnO2電化學性能的影響。實驗結果顯示,棒狀α- MnO2在中性Na2SO4水溶液中電容值可以達到120 F/g,絮狀的δ-MnO2的層狀結構具有較好的電化學性能,於中性Na2SO4水溶液中其最高電容值可以達到265 F/g。且5000次迴圈的循環壽命測試後,電容值依舊保留了82%。
    負極部分,我們採用靜電紡織製成奈米尺度的聚丙烯腈纖維,並對其進行預氧化及碳化。研究不同碳化溫度以及奈米碳管添加物對碳纖維的電化學影響。在電化學測試中得到電容值,於酸性溶液中達272 F/g;於中性溶液中達129 F/g。並且在5000迴圈的循環壽命測試後,幾乎沒有電容值的損失。
    吾人使用δ-MnO2和碳纖維設計之非對稱超級電容擁有2 V的操作電壓和 56.7 Wh/kg的能量密度,而且在5000次迴圈測試依舊保持了原先電容的92%之效果。


    Asymmetric supercapacitor has the dual functions of the persuade-capacitor and the electrochemical double-layer capacitor, which has the advantages of energy density and high power density. Thus, the research of asymmetric supercapacitor is a hot topic developed in both academic and industrial fields.
    In this thesis, MnO2 were synthesized by hydrothermal method, respectively. The effects of the microstructures on the MnO2 electrochemical performances were also investigated. The results indicate that the electrochemical performances of the δ-MnO2 are better than those of the α-MnO2, the maximum specific capacitance of the former is 265 F/g, but those of the latter is 120 F/g. Additionally, the specific capacitance is decreased about 18% of initial capacitance after 5000 cycles.
    Nano-scale of polyacrylonitrile (PAN) fiber was prepared using electrospinning method, and then stabilization and carbonization were preformed. The effect of different carbonization temperatures and the additional CNTs on the electrochemical performances were investigated. According to characterization results of CV and GV test, the optimal conditions were added by 3% CNT with 750oC carbonization for 2 hr. The specific capacitance of the 3%CNTs-CNFs is 272 F/g in acidic solution and129 F/g in neutral solution. The specific capacitance after 5000 cycles keeps constant.
    The asymmetric supercapacitor, whose positive electrode is δ-MnO2 and negative electrodes is 3%CNTs-CNFs, show working voltage of 2 V, and the specific energy of 56.7 Wh/kg at a current density of 0.1 A/g. It also keeps good cycling performance of 92% after 5000 cycles.

    摘要1 Abstract2 目次4 圖目次5 表目次7 第一章 緒論8 1.1超級電容概述8 1.1.1超級電容簡介8 1.1.2超級電容的種類及工作原理10 1.1.3 超級電容特點15 1.2 超級電容電極材料研究進展18 工作電壓(V)18 1.3 非對稱電容器構造與意義20 1.4 研究動機21 第二章 原理與文獻討論24 2.1 以電紡織方法製備碳化纖維24 2.1.1 靜電紡織技術介紹24 2.1.2 PAN基纖維簡介25 2.2 水熱法簡介28 第三章 實驗藥品、設備、步驟與分析原理30 3.1實驗藥品30 3.2 實驗設備與器材32 3.3 實驗步驟與方法33 3.3.1負極材料製備33 3.3.2正極材料製備34 3.4電化學量測法35 3.4.1循環伏安法(Cyclic Voltammetry, CV)35 3.4.2恒電流充放電測試方法及其原理(Galvanostatic charge-discharge cycling, GV)38 第四章 結果與討論40 4.1 正極材料部分40 4.1.1.結構表徵與形貌分析41 4.1.2.電化學性能表徵52 4.2 負極材料製備60 4.3 二氧化錳//碳纖維非對稱電容設計與結果70 第五章 結論82 參考文獻84

    [1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 7 (2008) 845-854.
    [2] B.E. Conway, in: Proceedings of the 34th International Power Sources Symposium, June 25, 1990 - June 28, 1990, Publ by IEEE, Cherry Hill, NJ, USA, 1991, pp. 319-327.
    [3] B. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (POD), Kluwer Academic/plenum. New York, 1999.
    [4] A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 157 (2006) 11-27.
    [5] P. Jampani, A. Manivannan, P.N. Kumta, Advancing the supercapacitor materials and technology frontier for improving power quality. The Electrochemical Society Interface, 19 (2010) 57-62.
    [6] J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochimica Acta, 56 (2011) 2127-2134.
    [7] U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application. Journal of Alloys and Compounds, 509 (2011) 1677-1682.
    [8] Y. Zhang, G.-Y. Li, Y. Lv, L.-Z. Wang, A.-Q. Zhang, Y.-H. Song, B.-L. Huang, Electrochemical investigation of MnO2 electrode material for supercapacitors. International Journal of Hydrogen Energy, 36 (2011) 11760-11766.
    [9] P. Yu, X. Zhang, Y. Chen, Y. Ma, Self-template route to MnO2 hollow structures for supercapacitors. Materials Letters, 64 (2010) 1480-1482.
    [10] G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, M. Srinivasan, Synthesis and electrochemical properties of electrospun V2O 5 nanofibers as supercapacitor electrodes. Journal of Materials Chemistry, 20 (2010) 6720-6725.
    [11] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources, 195 (2010) 4418-4422.
    [12] C. Lei, P. Wilson, C. Lekakou, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. Journal of Power Sources, 196 (2011) 7823-7827.
    [13] D. Antiohos, G. Folkes, P. Sherrell, S. Ashraf, G.G. Wallace, P. Aitchison, A.T. Harris, J. Chen, A.I. Minett, Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. Journal of Materials Chemistry, 21 (2011) 15987-15994.
    [14] Y. Wang, C. Yang, P. Liu, Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors. Chemical Engineering Journal, 172 (2011) 1137-1144.
    [15] B. Conway, W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 7 (2003) 637-644.
    [16] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34 (2009) 4889-4899.
    [17] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38 (2009) 2520-2531.
    [18] X.W. Huang, Z.W. Xie, X.Q. He, H.Z. Sun, C.Y. Tong, D.M. Xie, Electric Double Layer Capacitors Using Activated Carbon Prepared from Pyrolytic Treatment of Sugar as Their Electrodes. Synthetic Metals, 135–136 (2003) 235-236.
    [19] E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii, Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere. Carbon, 44 (2006) 983-988.
    [20] B. Fang, L. Binder, Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochimica Acta, 52 (2007) 6916-6921.
    [21] W. Xing, S. Qiao, R. Ding, F. Li, G. Lu, Z. Yan, H. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 44 (2006) 216-224.
    [22] Y. Zhao, M.-b. Zheng, J.-m. Cao, X.-f. Ke, J.-s. Liu, Y.-p. Chen, J. Tao, Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors. Materials Letters, 62 (2008) 548-551.
    [23] K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, High rate performance of highly dispersed C< sub> 60</sub> on activated carbon capacitor. Electrochimica Acta, 51 (2005) 972-977.
    [24] B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta, 52 (2007) 4595-4598.
    [25] T. Katakabe, T. Kaneko, M. Watanabe, T. Fukushima, T. Aida, Electric double-layer capacitors using “bucky gels” consisting of an ionic liquid and carbon nanotubes. Journal of the Electrochemical Society, 152 (2005) A1913-A1916.
    [26] Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochemical and Solid-State Letters, 10 (2007) A106-A110.
    [27] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Letters, 8 (2008) 3498-3502.
    [28] D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. The Journal of Physical Chemistry Letters, 1 (2009) 467-470.
    [29] I.-H. Kim, K.-B. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. Journal of the Electrochemical Society, 153 (2006) A383-A389.
    [30] W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu, Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. Journal of the Electrochemical Society, 153 (2006) A255-A260.
    [31] W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu, Electrochemical capacitor behavior of layered ruthenic acid hydrate. Journal of the Electrochemical Society, 151 (2004) A1181-A1187.
    [32] N. Choudhury, A. Shukla, S. Sampath, S. Pitchumani, Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. Journal of the Electrochemical Society, 153 (2006) A614-A620.
    [33] G. Bo, Z. Xiaogang, Y. Changzhou, L. Juan, Y. Long, Amorphous Ru< sub> 1− y</sub> Cr< sub> y</sub> O< sub> 2</sub> loaded on TiO< sub> 2</sub> nanotubes for electrochemical capacitors. Electrochimica Acta, 52 (2006) 1028-1032.
    [34] X.-h. Yang, Y.-g. Wang, H.-m. Xiong, Y.-y. Xia, Interfacial synthesis of porous MnO< sub> 2</sub> and its application in electrochemical capacitor. Electrochimica Acta, 53 (2007) 752-757.
    [35] T. Brousse, M. Toupin, D. Belanger, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. Journal of the Electrochemical Society, 151 (2004) A614-A622.
    [36] S.-W. Hwang, S.-H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. Journal of Power Sources, 172 (2007) 451-459.
    [37] D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochemistry Communications, 9 (2007) 869-874.
    [38] G.-h. Yuan, Z.-h. Jiang, A. Aramata, Y.-z. Gao, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon, 43 (2005) 2913-2917.
    [39] Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu, Y. Kuang, Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochimica Acta, 52 (2007) 2959-2965.
    [40] C. Chen, D. Zhao, X. Wang, Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride. Materials Chemistry and Physics, 97 (2006) 156-161.
    [41] W. Liu, Y. Soneda, M. Kodama, J. Yamashita, H. Hatori, Low-temperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area. Carbon, 45 (2007) 2759-2767.
    [42] S.-L. Kuo, N.-L. Wu, Electrochemical capacitor of MnFe2O4 with organic Li-ion electrolyte. Electrochemical and Solid-State Letters, 10 (2007) A171-A175.
    [43] D. Choi, P.N. Kumta, Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. Journal of the Electrochemical Society, 153 (2006) A2298-A2303.
    [44] H. Zheng, F. Tang, M. Lim, A. Mukherji, X. Yan, L. Wang, G.Q. Lu, Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor. Journal of Power Sources, 195 (2010) 680-683.
    [45] Z.J. Lao, K. Konstantinov, Y. Tournaire, S.H. Ng, G. Wang, H.K. Liu, Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. Journal of Power Sources, 162 (2006) 1451-1454.
    [46] D. Evans, M. Ennis, D. Mathre, Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of. alpha.-substituted carboxylic acid derivatives. Journal of the American Chemical Society, 104 (1982) 1737-1739.
    [47] Z. Tang, C.h. Tang, H. Gong, A High Energy Density Asymmetric Supercapacitor from Nano‐architectured Ni (OH) 2/Carbon Nanotube Electrodes. Advanced Functional Materials, 22 (2012) 1272-1278.
    [48] J. Zhang, J. Jiang, H. Li, X. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy & Environmental Science, 4 (2011) 4009-4015.
    [49] H. Jiang, C. Li, T. Sun, J. Ma, A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 4 (2012) 807-812.
    [50] Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 4 (2010) 5835-5842.
    [51] L.-B. Kong, M. Liu, J.-W. Lang, Y.-C. Luo, L. Kang, Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. Journal of the Electrochemical Society, 156 (2009) A1000-A1004.
    [52] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 v in aqueous medium. Journal of Power Sources, 153 (2006) 183-190.
    [53] N. Yusof, A.F. Ismail, Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. Journal of Analytical and Applied Pyrolysis, 93 (2012) 1-13.
    [54] Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, H. Fong, Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50 (2009) 2999-3006.
    [55] R. Jalili, M. Morshed, S.A.H. Ravandi, Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. Journal of Applied Polymer Science, 101 (2006) 4350-4357.
    [56] X.-H. Qin, Structure and property of electrospinning PAN nanofibers by different preoxidation temperature. Journal of Thermal Analysis and Calorimetry, 99 (2010) 571-575.
    [57] R.D. Martinez, A.N.R. Da Silva, R. Furlan, I. Ramos, J.J. Santiago-Aviles, in: Microelectronis Technology and Devices, SBMICRO 2004 - Proceedings of the Nineteenth International Symposium, September 7, 2004 - September 11, 2004, Electrochemical Society Inc., Porto De Galinhas, Pernambuco, Brazil, 2004, pp. 277-282.
    [58] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 92 (2007) 1421-1432.
    [59] S. Prilutsky, E. Zussman, Y. Cohen, The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly (acrylonitrile) nanofibers. Nanotechnology, 19 (2008) 165603.
    [60] 施尔畏, 夏长泰, 水热法的应用与发展. 无机材料学报, 11 (1996) 193-206.
    [61] H.-Y. DU, Synthesis of Catalysts by Impregnation Method on Carbon Nanotubes for Direct Methanol Fuel Cell Application. 文化大學材料科學與奈米科技研究所碩士論文, (2005).
    [62] D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: Challenges and opportunities. Nano Today, 7 (2012) 137-152.
    [63] 李志甫, X光吸收光譜原理簡介. X光吸收光譜數據分析研習營, (2009).
    [64] S. Sladkevich, J. Gun, P.V. Prikhodchenko, V. Gutkin, A.A. Mikhaylov, V.M. Novotortsev, J.X. Zhu, D. Yang, H.H. Hng, Y.Y. Tay, Z. Tsakadze, O. Lev, Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries. Nanotechnology, 23 (2012).
    [65] S. Devaraj, N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. The Journal of Physical Chemistry C, 112 (2008) 4406-4417.
    [66] Y.J. Kang, H. Chung, W. Kim, 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synthetic Metals, 166 (2013) 40-44.
    [67] J. Cao, Y. Wang, Y. Zhou, J.-H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO< sub> 2</sub> and graphene electrodes. Journal of Electroanalytical Chemistry, (2012).
    [68] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. The Journal of Physical Chemistry C, 113 (2009) 14020-14027.
    [69] K.-H. Ye, Z.-Q. Liu, C.-W. Xu, N. Li, Y.-B. Chen, Y.-Z. Su, MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors. Inorganic Chemistry Communications, 30 (2013) 1-4.
    [70] P.-C. Gao, A.-H. Lu, W.-C. Li, Dual functions of activated carbon in a positive electrode for MnO< sub> 2</sub>-based hybrid supercapacitor. Journal of Power Sources, 196 (2011) 4095-4101.
    [71] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Development of redox deposition of birnessite-type MnO< sub> 2</sub> on activated carbon as high-performance electrode for hybrid supercapacitors. Materials Chemistry and Physics, (2012).

    QR CODE