簡易檢索 / 詳目顯示

研究生: 吳冠熹
Kuan-Hsi Wu
論文名稱: 聚(3,4-乙烯二氧噻吩)/磷鉬酸之薄膜製備與表徵分析
The Preparation and Characterization of Poly(3,4-ethylenedioxythiophene) /Phosphomolybdic Acid Films
指導教授: 張志宇
Chih-Yu Chang
口試委員: 賴志遠
林子仁
黃炳綜
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 導電高分子聚(3,4-乙烯二氧噻吩)磷鉬酸有機太陽能電池
外文關鍵詞: conductive polymer, poly(3,4-ethylenedioxythiophene), phosphomolybdic acid, organic solar cells
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們利用化學氧化聚合法,透過將單體3,4-乙烯二氧噻吩(3,4-ethylenedioxythiophene, EDOT)與氧化劑磷鉬酸(phosphomolybdic acid, PMA)混合,合成聚(3,4-乙烯二氧噻吩)(poly(3,4-ethylenedioxythiophene), PEDOT)導電高分子,而由於聚合後的薄膜表面具有較多的孔洞,我們透過PMA溶液對薄膜進行表面處理,處理後的膜面更為平坦且摻雜程度提高。本研究製作出的PEDOT:PMA薄膜具有良好的透光度(80%)、高功函數(5.22 eV)以及優異的水阻抗性,而薄膜的導電度在經過PMA處理後從0.08 S cm-1提升至1.26 S cm-1,高於市售的PEDOT:PSS PH1000(導電度為0.15 S cm-1)。最後我們將PEDOT:PMA薄膜應用於有機太陽能電池,成功驗證了材料應用於電洞傳輸層的可行性。本研究製程簡易且快速、成本低廉,未來可望用於大面積生產,具有廣泛的應用。


    In this study, we used chemical oxidative polymerization to synthesize poly(3,4-ethylenedioxythiophene (PEDOT) conductive polymer, by mixing the monomer 3,4-ethylenedioxythiophene (EDOT) with the oxidant phosphomolybdic acid (PMA). Because the surface of the polymerized film has lot of pin-hole, we use the PMA solution to post-treatment the thin film. The treated film surface has a flatter surface and a higher doping level. The PEDOT:PMA film fabricated by this method has good transmittance (80%), high work function (5.22 eV) and excellent water resistance, while the conductivity of the film after PMA treatment increases from 0.08 S cm-1 increased to 1.26 S cm-1, while the conductivity of the commercially available PEDOT:PSS PH1000 was 0.15 S cm-1. Finally, we applied the PEDOT:PMA thin film to organic solar cells, and successfully verified the feasibility of the material applied to the hole transport layer. The research process is simple, fast, and low-cost, and it is expected to be used in large-scale production in the future, with a wide range of applications.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 第二章 文獻回顧 4 2.1導電高分子發展歷史 4 2.1.1材料價帶理論 5 2.1.2導電高分子導電原理 6 2.1.3導電高分子的摻雜機制 8 2.2導電高分子-PEDOT介紹 9 2.3PEDOT之合成方式 10 2.4磷鉬酸簡介 14 第三章 實驗步驟與分析 17 3.1實驗設計 17 3.2 薄膜製備 18 3.2.1 材料購買 18 3.2.2 基板清洗過程 18 3.2.3 製備PEDOT:PMA溶液以及PMA溶液 18 3.2.4 製備PEDOT:PMA薄膜 19 3.3 製備有機太陽能電池 19 3.3 薄膜相關量測 19 第四章 結果與討論 21 4.1 合成之PEDOT:PMA分析 21 4.1.1 聚合機制推測 21 4.1.2 FTIR 分析 21 4.1.3 Raman 分析 23 4.1.4 XPS 分析 25 4.3 PEDOT:PMA有無經過PMA處理之差異 28 4.3.1 有無經過PMA處理薄膜表面形貌分析 28 4.3.2 有無經過PMA處理薄膜光學性質分析 29 4.3.3 有無經過PMA處理薄膜導電度分析 31 4.3.4 有無經過PMA處理表面功函數分析 31 4.3.5 有無經過PMA處理薄膜水阻抗性測試 32 4.5 PEDOT:PMA薄膜改質 34 4.5.1 功函數分析 34 4.5.2 導電度分析 35 4.6 PEDOT:PMA應用於有機太陽能電池 36 第五章 結論 39 參考文獻 40

    [1] S. Nambiar and J. T. W. Yeow, Biosensors and Bioelectronics, vol. 26, no. 5, pp. 1825-1832, 2011.
    [2] F. Zhao, Y. Shi, L. Pan, and G. Yu, Accounts of chemical research, vol. 50 7, pp. 1734-1743, 2017.
    [3] F. Jonas and J. T. Morrison, Synthetic Metals, vol. 85, no. 1, pp. 1397-1398, 1997.
    [4] H. Liu et al., Journal of Materials Chemistry C, vol. 6, no. 45, pp. 12121-12141, 2018.
    [5] G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake, RSC Advances, vol. 5, no. 47, pp. 37553-37567, 2015.
    [6] S. Kirchmeyer and K. Reuter, Journal of Materials Chemistry, vol. 15, no. 21, pp. 2077-2088, 2005.
    [7] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Organic Electronics, vol. 9, no. 5, pp. 727-734, 2008.
    [8] H. Staudinger, Berichte der deutschen chemischen Gesellschaft (A and B Series), vol. 53, no. 6, pp. 1073-1085, 1920.
    [9] H. Shirakawa, Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2574-2580, 2001.
    [10] C. K. Chiang et al., Physical Review Letters, vol. 39, no. 17, pp. 1098-1101, 1977.
    [11] D. Kumar and R. C. Sharma, European Polymer Journal, vol. 34, no. 8, pp. 1053-1060, 1998.
    [12] C. MA, P. SG, G. PR, S. Shashwati, and P. VB, Soft nanoscience letters, vol. 2011, 2011.
    [13] A. F. Diaz, J. I. Castillo, J. Logan, and W.-Y. Lee, Journal of electroanalytical Chemistry and Interfacial electrochemistry, vol. 129, no. 1-2, pp. 115-132, 1981.
    [14] T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, Chemical Reviews, vol. 118, no. 14, pp. 6766-6843, 2018.
    [15] M. E. Abdelhamid, A. P. O'Mullane, and G. A. Snook, RSC Advances, vol. 5, no. 15, pp. 11611-11626, 2015.
    [16] J. L. Bredas and G. B. Street, Accounts of Chemical Research, vol. 18, no. 10, pp. 309-315, 1985.
    [17] N. A. Mohd Radzuan, A. B. Sulong, and J. Sahari, International Journal of Hydrogen Energy, vol. 42, no. 14, pp. 9262-9273, 2017.
    [18] H. Kumar, A. Boora, A. Yadav, Rajni, and Rahul, Results in Chemistry, vol. 2, p. 100046, 2020.
    [19] N. K. Swamy, S. Sandeep, and A. Santhosh, Indian Journal of Advances in Chemical Science S2, vol. 6, p. 9, 2017.
    [20] A. A. Nada, A. Eckstein Andicsová, and J. Mosnáček, International Journal of Molecular Sciences, vol. 23, no. 2, p. 842, 2022.
    [21] Y. W. Park, Synthetic Metals, vol. 45, no. 2, pp. 173-182, 1991.
    [22] T.-H. Le, Y. Kim, and H. Yoon, Polymers, vol. 9, no. 4, p. 150, 2017.
    [23] S. S. Kalagi and P. S. Patil, Synthetic Metals, vol. 220, pp. 661-666, 2016.
    [24] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., vol. 12, no. 7, pp. 481-494, 2000.
    [25] K. Sun et al., J. Mater. Sci. Mater. Electron., vol. 26, no. 7, pp. 4438-4462, 2015.
    [26] Q. Zafar, S. M. Abdullah, M. I. Azmer, M. A. Najeeb, K. W. Qadir, and K. Sulaiman, Sensors and Actuators B: Chemical, vol. 255, pp. 2652-2656, 2018.
    [27] A. van Dijken, A. Perro, E. A. Meulenkamp, and K. Brunner, Organic Electronics, vol. 4, no. 2, pp. 131-141, 2003.
    [28] A. Elschner and W. Lövenich, MRS Bulletin, vol. 36, no. 10, pp. 794-798, 2011.
    [29] M. J. Donahue et al., Materials Science and Engineering: R: Reports, vol. 140, p. 100546, 2020.
    [30] C. Boehler, Z. Aqrawe, and M. Asplund, Bioelectronics in Medicine, vol. 2, no. 2, pp. 89-99, 2019.
    [31] P. M. Smith, L. Su, W. Gong, N. Nakamura, B. Reeja-Jayan, and S. Shen, RSC Advances, vol. 8, no. 35, pp. 19348-19352, 2018.
    [32] A. Kumar and J. R. Reynolds, Macromolecules, vol. 29, no. 23, pp. 7629-7630, 1996.
    [33] P. Sakunpongpitiporn, K. Phasuksom, N. Paradee, and A. Sirivat, RSC Advances, vol. 9, no. 11, pp. 6363-6378, 2019.
    [34] P. Gómez-Romero, N. Casañ-Pastor, and M. Lira-Cantú, Solid State Ionics, vol. 101-103, pp. 875-880, 1997.
    [35] A.-E. Stamate, O. D. Pavel, R. Zavoianu, and I.-C. Marcu, Catalysts, vol. 10, no. 1, p. 57, 2020.
    [36] M. Langpape, J. M. M. Millet, U. S. Ozkan, and M. Boudeulle, Journal of Catalysis, vol. 181, no. 1, pp. 80-90, 1999.
    [37] G. M. Suppes, C. G. Cameron, and M. S. Freund, Journal of The Electrochemical Society, vol. 157, no. 9, p. A1030, 2010.
    [38] B. V. Subba Reddy, G. Narasimhulu, P. Subba Lakshumma, Y. Vikram Reddy, and J. S. Yadav, Tetrahedron Letters, vol. 53, no. 14, pp. 1776-1779, 2012.
    [39] S. L. McFarlane, B. A. Deore, N. Svenda, and M. S. Freund, Macromolecules, vol. 43, no. 24, pp. 10241-10245, 2010.
    [40] A. V. Murugan, C. W. Kwon, G. Campet, and B. B. Kale, Active and Passive Electronic Components, vol. 26, p. 456152, 2003.
    [41] M. B. McDonald and M. S. Freund, ACS Applied Materials & Interfaces, vol. 3, no. 4, pp. 1003-1008, 2011.
    [42] M. B. McDonald, M. S. Freund, and P. T. Hammond, ChemSusChem, vol. 10, no. 22, pp. 4599-4609, 2017.
    [43] S. Zhang et al., Materials Letters, vol. 222, pp. 105-108, 2018.
    [44] T. Bahry et al., New Journal of Chemistry, vol. 42, no. 11, pp. 8704-8716, 2018.
    [45] S. Ghosh et al., New Journal of Chemistry, vol. 38, no. 3, pp. 1106-1115, 2014.
    [46] W. W. Chiu, J. Travaš-Sejdić, R. P. Cooney, and G. A. Bowmaker, Journal of Raman Spectroscopy, vol. 37, no. 12, pp. 1354-1361, 2006.
    [47] B. R. Moraes, N. S. Campos, and C. M. S. Izumi, Vibrational Spectroscopy, vol. 96, pp. 137-142, 2018.
    [48] Y. Wang, X. Zhong, W. Wang, and D. Yu, Cellulose, vol. 28, no. 8, pp. 4913-4926, 2021.
    [49] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
    [50] S. Xiong, L. Zhang, and X. Lu, Polymer Bulletin, vol. 70, no. 1, pp. 237-247, 2013.
    [51] J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, and Y. Yang, Advanced Functional Materials, vol. 15, no. 2, pp. 203-208, 2005.
    [52] I. Zozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, ACS Applied Polymer Materials, vol. 1, no. 1, pp. 83-94, 2019.
    [53] T. A. Yemata et al., RSC Advances, vol. 10, no. 3, pp. 1786-1792, 2020.
    [54] X. Zhou, J. Blochwitz, M. Pfeiffer, A. Nollau, T. Fritz, and K. Leo, Advanced Functional Materials, vol. 11, no. 4, pp. 310-314, 2001.
    [55] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Applied Physics Letters, vol. 73, no. 6, pp. 729-731, 1998.
    [56] D. Liu et al., Journal of Materials Chemistry A, vol. 5, no. 12, pp. 5701-5708, 2017

    QR CODE