簡易檢索 / 詳目顯示

研究生: 曾珊儀
Shan-I Tseng
論文名稱: 以FPGA設計與實現之全數位式鎖相迴路
The Design and Implementation of an All-Digital Phase-Locked Loop on FPGA
指導教授: 林銘波
Ming-Bo Lin
口試委員: 林昌鴻
Chang Hong Lin
陳郁堂
Yie-Tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 全數位式鎖相迴路時脈產生器快速鎖定現場可程式邏輯陣列低成本小面積
外文關鍵詞: ADPLL, all-digital phase-locked loop, fast-lock-in, clock generator, FPGA, small-area
相關次數: 點閱:789下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

許多附有快速鎖定功能全數位式鎖相迴路(all-digital phase-locked loop)在過去被提出,但往往都是花大面積與高功耗去達成。而在終端裝置應用中,要求嵌入式系統低功率和低成本,但也需要快速鎖定功,以便微控制器可以從睡眠模式快速喚醒。
本論文提出了一個適用於微控制器之時脈產生器全數位式鎖相迴路。一個由多工器鏈組成的數位控制振盪器(digitally controlled oscillator)設計為兩種模式:振盪模式和時間數位轉換模式。因此,DCO可在一開始時用來量測輸入頻率,改善鎖定時間,之後再作為振盪器運作。藉由重複利用延遲線,此全數位式鎖相迴路可以以較小的面積實現更快的鎖定時間。本論文也提出了依FPGA架構特性所實現之細調延遲單元,最高可在FPGA上達到0.137 ns解析度。
本論文提出全數位式鎖相迴路在Xilinx Virtex-5 V5LX110T上實現,使用LUTs(lookup table) 471個、暫存器179個,輸出範圍為8.22MHz-78MHz,可在十個週期內進入鎖定狀態。輸出頻率為75 MHz時,峰峰值抖動為0.154ns。


A lot of fast-lock-in all-digital phase-locked loops (ADPLL) have been proposed, but they usually come with large area cost and power consumption. For those low-end sensor devices, low-power and low-cost ADPLLs are required. A fast-lock-in feature is also desired so that microcontroller can wake up quickly from sleep mode to run mode.
In this thesis, a complete all-digital phase-locked loop for clock generation is proposed. A multiplexer-chain-based digitally controlled oscillator (DCO) is designed into two modes: the oscillating mode and the time-to-digital conversion (TDC) mode.
Hence the DCO can be used to capture the input frequency at the beginning to improve lock-in time and then work as oscillator later. As a consequence, the ADPLL can achieve faster lock-in time at a small cost by reusing the delay line. This thesis also proposes a fine-tuning delay cell made of FPGA primitives in which it can achieve 0.137-ns resolution on FPGA.
The proposed ADPLL is implemented on Xilinx Virtex-5 V5LX110T. It uses 471 LUTs and 179 registers. The ADPLL output range is from 8.22 MHz to 78 MHz and can enter lock-in status within ten cycles. The peak-to-peak jitter is 0.154 ns with the output frequency of 75 MHz.

摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究背景與動機 1 1.2論文組織 1 第二章 鎖相迴路基本概念介紹 2 2.1 類比式鎖相迴路 2 2.2 混合式鎖相迴路 3 2.3 全數位式鎖相迴路 4 2.4 全數位式鎖相迴路元件 4 2.4.1 相位頻率偵測器(Phase frequency detector) 4 2.4.2 時間數位轉換器(Time-to-digital converter) 6 2.4.3 控制單元 8 2.4.4 數位控制震盪器(Digitally controlled oscillator) 9 2.4.5 除頻器 10 2.5 時脈抖動(jitter) 10 2.5.1週期抖動(Period jitter) 11 2.5.2峰對峰抖動(Peak-to-peak jitter) 11 2.5.3 週期對週期抖動(cycle-to-cycle jitter) 11 第三章 快速鎖定全數位式鎖相迴路文獻回顧 13 3.1 二元搜尋法(Binary search approach) 13 3.2兩階式時間數位轉換器(Two-level flash time-to-digital converter) 14 3.3頻率估計演算法(Frequency estimation algorithm) 15 第四章 全數位式鎖相迴路之設計 17 4.1 設計概要 17 4.2 頻率複製電路 17 4.2.1 震盪模式 18 4.2.2 時間數位轉換模式 25 4.3 迴路濾波器 27 4.4 控制器設計 28 第五章 模擬與驗證 32 5.1 Post-place & route模擬結果 32 5.2 ChipScope Pro Analyzer 38 5.3 結果總結與表較 41 第六章 結論 44 6.1 總結 44 6.2 未來展望 44 參考文獻 46

[1] C.-C. Hung and S.-I. Liu, “A 40-GHz fast-locked all-digital phase-locked loop using a modified bang-bang algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 6, pp. 321–325, Jun. 2011.
[2] D. Sheng, C. C. Chung, and C. Y. Lee, "A Fast-Lock-In ADPLL with High-Resolution and Low-Power DCO for SoC Applications," IEEE APCCAS, pp. 105-108, Dec. 2006.
[3] T. Watanabe and S. Yamauchi, “An all-digital PLL for frequency multiplication by 4 to 1022 with seven-cycle lock time,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 198–204, Feb. 2003.
[4] C.-T. Wu, W.-C. Shen, W. Wang, and A.-Y. Wu, “A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 430–434, Jun. 2010.
[5] Scaling Ching-Che Chung, Wei-Siang Su, and Chi-Kuang Lo, ”A 0.52/1 V Fast Lock-in ADPLL for Supporting Dynamic Voltage and Frequency,” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 408-412 , Jan. 2016.
[6] 陳逸瑋,一個快速鎖定 460 .1 MHz 至 6.17 7GHz之全數位式鎖相迴路的設計Design of a Fast Lock ing 460.1MHz to 6.1 7 7GHz,國立交通大學電機與控制工程學系碩士論文,中華民國一零一年七月。
[7] Thomas Olsson and Peter Nilsson, “A Digitally Controlled PLL for SoC Applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[8] M. Kumm, H. Klingbeil, and P. Zipf, “An FPGABased Linear All-Digital Phase-Locked Loop,” IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 57, no. 9, pp. 2487-2497, Apr. 2010.
[9] P. Paliwal, P. Laad, M. Sattineni, and S. Gupta, "Tradeoffs between settling time and jitter in phase locked loops", IEEE 56th Int. Midwest Symp. on Circuit and Systems, pp. 746-749, Aug. 2013.
[10] Saeed Golestan, Malek Ramezani, Josep M. Guerrero, Francisco D. Freijedo, and Mohammad Monfared, “Moving Average Filter Based Phase-Locked Loops: Performance Analysis and Design Guidelines,” IEEE Transactions On Power Electronics, vol. 29, no. 6, pp. 2750-2763 , Jun. 2014.
[11] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors”, IEEE Transactions On Circuits And Systems—Ii: Express Briefs, vol. 52, no. 5, pp. 233–237, May 2005.
[12] C.-C. Chung and C.-Y. Lee , “An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[13] C. -T. Wu, W. Wang, I. -C. Wey, and A. -Y Wu, "A scalable DCO design for portable ADPLL designs," IEEE International Symposium on Circuits and Systems, pp. 5449-5452, May 2005.
[14] UG190 Virtex-5 FPGAUser Guide (v5.4), pp. 173-176, March 16, 2012
[15] DS202 Virtex-5 FPGA Data Sheet: DC and Switching Characteristics (v5.5), pp. 44, June 17, 2016.
[16] ChipScope Pro Software and Cores, October 16, 2012.
[17] R. Stefo, J. Schreiter, J. Schlüßler, and R. Schüffny, "High Resolution ADPLL Frequency Synthesizer for FPGA- and ASIC-based Applications," IEEE International Conference on Field-Programmable Technology, pp. 28-34, 2003.
[18] W.-H. Chen, W.-F. Loke, and B. Jung, “A 0.5-V, 440-μW frequency synthesizer for implantable medical devices,” IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1896–1907, Aug. 2012.

無法下載圖示 全文公開日期 2024/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE