簡易檢索 / 詳目顯示

研究生: 蔡為翔
Wei-Xiang Tsai
論文名稱: 以現場可程式化閘陣列實現延遲迴繞法搭配相位排序法之高精度時間至數位轉換電路
A High Resolution Field Programmable Gate Array Time-to-Digital Converter Based On Delay Wrapping And Phase Sorting
指導教授: 陳伯奇
Poki Chen
口試委員: 鄒應嶼
none
陳怡然
none
許孟烈
none
姚嘉瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 溫度變異抗性時間至數位轉換電路延遲迴繞相位排序現場可程式閘陣列
外文關鍵詞: temperature insensitive, time-to-digital converter, wrapping of delay, phase sorting, field programmable gate array (FPGA)
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個實現於現場可程式化閘陣列(Field Programmable Gate Array, FPGA)並利用延遲迴繞法為基礎的時間至數位轉換電路(Time-to-digital converter, TDC)。本論文提出之時間至數位轉換電路不但可以抑制溫度變異,並達到極高解析度。利用FPGA內建之延遲元件,讓參考時脈衝經過逐級延遲,利用延遲迴繞(Wrapping)效果讓所有延遲脈衝之相位分布在0~360度之參考週期內,並透過靜態時序分析,以排序挑出最接近理想之延遲週期,藉以降低量化誤差、進而達到高解析度。其解析度可高達1ps,且不隨溫度變異而改變,另外加入了偏移校準技術以更進一步的抑制溫度變異對偏移量的影響,並且將輸出偏移誤差抑制在10個LSB之內。長線量測之積分非線性誤差(INL)為-2.09~2.36 LSB、差分非線性誤差(DNL)為-1.45~1.73LSB。並完整測試涵蓋0度到50度的運作功能,成功驗證本時間至數位轉換電路抑制溫度變異之優異效果,整體效能甚至優於大部分的全客戶(Full Custom)設計之版本。


    A high resolution FPGA time-to-digital converter based on delay wrapping and phase sorting to achieve an extremely fine resolution of 1ps is proposed in this thesis. A single clock passed a series of delay elements is used to generate multiple reference clocks with different delays. Due to periodicity, those delays will be equivalently warpped between 0~360 and then phase sorting is applied to select proper reference clocks with delays uniformly distributed over 0~360 based on the required solution to achieve the best linearity. Furthermore, to reduce the impact of temperature-sensitive the offset, a cancellation circuit is created to substantially reduce offset and confine the output difference within 10LSB for the same input interval. With 1ps such a fine resolution, the long-term integral nonlinearity (INL) is measured to be merely -2.09~2.36 LSB and the corresponding differential nonlinearity (DNL) is -1.45~1.73LSB. This TDC was tested to be fully functional over 0C to 50C ambient temperature range with extremely low resolution variations. Its performance is even much superior than most full-custom design TDCs.

    第一章 1 序 論 1 1-1 研究動機 1 1-2 章節介紹 2 第二章 3 時間至數位轉換電路 3 2-1 時間至數位轉換電路簡介 3 2-2 時間至數位轉換電路之架構介紹與說明 6 2-2.1計數器法之時間至數位轉換電路 6 2-2.2抽頭延遲線式之時間至數位轉換電路 8 2-2.3鏈結構延遲線之時間至數位轉換電路 11 2-2.4合併延遲鏈之時間至數位轉換電路 15 2-2.5數位校準 17 2-2.6總結 20 第三章 21 以延遲迴繞法實現之時間至數位轉換電路 21 3-1 FPGA晶片與本論文所使用的FPGA開發板簡介 21 3-2 以延遲迴繞法為基礎搭配相位排序法實現之時間至數位轉換電路 23 3-2.1延遲迴繞法之概念與問題 24 3-2.2多重延遲級(Muitiple delay lines)佈局佈線與相位排序(Phase sorting) 28 3-2.3同步器(Synchronizer) 38 3-2.4計數器陣列(Counter array) 40 3-2.5加總取值電路(Sumer&Sampler) 47 3-2.6自我偏移消除電路(Self Offset Cancelation Circuit) 49 第四章 53 FPGA之時脈網路 53 4-1 時脈偏移問題與時脈樹 53 4-2 Altera Stratix IV系列的時脈網路(Clock Network) 56 4-3 時脈網路對本論文架構之影響 58 第五章 59 實驗量測結果與未來展望 59 5-1量測儀器簡介 59 5-2量測環境的建立 63 5-3量測結果 64 5-3.1短線量測(Short Term Measurement) 64 5-3.2長線測量(Long Term Measurement) 66 5-3.3方均根誤差(RMS Resolution)測量 68 5-3.4溫度變異測量(Temperature Variation) 69 5-4結論與未來展望 73 參考文獻 74

    [1] A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci., vol. 54, no. 5,pp. 1574–1582, Oct. 2007.

    [2] W. W. Moses, S. Buckley, C. Vu, Q. Peng, N. Pavlov, W. Choong, J. Wu, and C.Jackson, “OpenPET: A flexible electronics system for radiotracer imaging,” IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2532–2537, Oct.2010.

    [3] G. Sportelli, N. Belcari, P. Guerra, F. Spinella, G. Franchi, F. Attanasi, S. Moehrs, V. Rosso, A. Santos, and A. Del Guerra, “Reprogrammable acquisition architecture for dedicated positron emission tomography,” IEEE Trans. Nucl. Sci., vol. 58, no. 3, pp. 695–702, Jun. 2011.

    [4] T. Otsuji, “A picoseconds-accurary,700-Mhz range si-bipolar time interval counter LSI,” IEEE Journal of Solid-State Circuit, vol. 28, pp. 941-947, 1993.

    [5] K. Ealgoo, L. Hansang, L. Taeyon, C. Dongbum, and P. Jaehong, “Time of flight (TOF) measurement of adjacent pulses,” in IEEE Nucl. Sci. Symp. Conf. Rec., vol. 2, pp. 609–612, 2001.

    [6] K. Maatta and J. Kostamovaara, “A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications,” IEEE Trans. Instrum. Meas., vol. 47, no. 2, pp. 521–536, 1998.

    [7] N. Paschalidis et al., “A time-of-flight system on a chip suitable for space instrumentation,” in IEEE Nucl. Sci. Symp. Conf. Rec., vol. 2, pp. 750–754, 2001.

    [8] P. Palojarvi, K. Maatta, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas., vol. 46, no. 4, pp. 996–999, 1997.

    [9] H. Brockhaus and A. Glasmachers, “Single particle detector system for high resolution time measurements,” IEEE Trans. Nucl. Sci., vol. 39, no. 4, pp. 707–711, 1992.

    [10]A. H. Chan and G. W. Roberts, “A jitter characterization system using a component-invariant Vernier delay line,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 1, pp. 79–95, Jan. 2004.

    [11] P. Napolitano, A. Moschitta, P. Carbone, “A survey on time interval measurement techniques and testing methods,” IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2010 - Proceedings , art. no. 5488103, pp. 181-186, 2010.

    [12] “IEEE standard for terminology and test methods for analog-to-digital converters,” IEEE Std., 13 Jun. 2001.

    [13] R. Nutt, “Digital time intervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, 1968.

    [14]J. Kalisz, R. Szplet, J. Pasierbinski, A. Ponieck, “Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution,” IEEE Trans. Instrum. Meas., vol. 46, pp. 71-75, 1997.

    [15] Mohamed Serraj Andaloussi, Mounir Boukadoum ,El-Mostapha Aboulhamid,” A Novel Time-To-Digital Converter with 150 ps time resolution and 2.5 ns Pulse-Pair resolution”IEEE 2002.

    [16] J. Kalisz, R. Szplet, R. Pelka, A. Poniecki, “Single-chip interpolating time counter with 200-ps resolution and 43-s range,” IEEE Trans. Instrum. Meas., vol. 46, pp. 851-856, 1997.

    [17] M.S. Andaloussi, M. Boukadoum, E.M. Aboulhamid, “A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution,” Microelectronics, The 14th International Conference on 2002 – ICM, pp. 123-126, 2002.

    [18] J. Wu, Z. Shi, I.Y. Wang, “Firmware-only Implementation of Time-to-Digital Converter (TDC) in Field-Programmable Gate Array (FPGA),” IEEE Nuclear Science Symposium Conference Record, 1, art. no. N10-2, pp. 177-181, 2003.

    [19] J. Song, Q. An, S. Liu, “A High-Resolution Time-to-Digital Converter Implemented in Field-Programmable-Gate-Arrays,” IEEE Trans. on Nuclear Science, Vol. 53, pp. 236-241, 2006.
    [20] Fishburn. M.W, Menninga. L.H, Favi. C, Charbon. E , “A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications,” IEEE Nuclear Science Symposium Conference Record, art. no. 13563679, pp. 2203-2208, 2013.

    [21] J. Wang, S. Liu, Q. Shen, H. Li, Q. An, “A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays,” IEEE Trans. on Nuclear Science, vol. 57, art. no. 5446507, pp. 446-450, 2010.

    [22] J. Wu, Z. Shi, “The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay,” IEEE Nuclear Science Symposium Conference Record, art. no. 4775079, pp. 3440-3446, 2008.

    [23] Yuan-Ho Chen, “A High Resolution FPGA-based Merged Delay Line TDC with Nonlinearity Calibration, ” IEEE International Symposium on Circuits and Systems, pp. 2432-2435,2013.

    [24] R. Pelka, J. Kalisz, R. Szplet, “Nonlinearity correction of the integrated time-to-digital converter with direct coding, ” IEEE Trans. Instrum. Meas. vol. 46, pp. 449-453, 1997.

    [25] R. Szplet, K. Klepacki, “An FPGA-integrated time-to-digital converter based on two-stage pulse shrinking,” IEEE Trans. Instrum. Meas., vol. 59, art. no. 5280372, pp. 1663-1670, 2010.

    [26] S.S. Junnarkar, P. O'Connor, P. Vaska, R. Fontaine, “FPGA-based self-calibrating time-to-digital converter for time-of-flight experiments,” IEEE Transactions on Nuclear Science, vol. 56, art. no. 5204613, pp. 2374-2379, 2009.

    [27] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng and C.-Y. Chu, “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements,” IEEE Transactions on Circuits and Systems I, Vol.54, pp. 2661-2668, 2007.

    [28] Poki Chen, Po-Yu Chen, Juan-Shan Lai and Yi-Jin Chen, “FPGA Vernier Digital-to-Time Converter with 1.58ps Resolution and 59.3 Minutes Operation Range,” IEEE Transactions on Circuits and Systems I, Vol. 57, pp.1134-1142, 2010.

    [29] “Stratix IV Device Handbook” available from the Altera Corporation, http://www.altera.com

    [30] M. Morris Mano, Digital Design, Third Edition, Prentice Hall, 2002.

    [31] “Quartus II Handbook Version 14.0,” http://www.home.agilent.com/.

    [32] “Quartus II Help v14.0,” http://quartushelp.altera.com/current/

    [33] Ming-Bo Lin, Digital System Designs and Practices: Using Verilog HDL and FPGAs, John Wiley & Sons, 2008.

    [34] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, D. K. Boese, B. A. Kahng, “Zero skew clock routing with minimum wirelength,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, pp. 799-814, 1992.

    [35] F. D. Wann, A. M. Franklin, “Asynchronous and Clocked Control Structures for VSLI Based Interconnection Networks,” IEEE Transactions on Computers, vol. C-32, pp. 284-293, 1983.

    [36] “Agilent Technologies 81133A and 81134A 3.35 GHz Pulse Pattern Generators Data Sheet Version 1.2,” available from Agilent Corporation, http://www.home.agilent.com/.

    [37] “Datasheet: Digital Phosphor Oscilloscopes and Digital Serial Analyzers,” available fromAgilentCorporation,www2.tek.com/cmswpt/madetails.lotr?ct=MA&cs=mur&ci=14588&lc=EN.

    [38]Marc-Andre Daigneault and Jean Pierre David,”A High-Resolution Time-to-Digita Converter on FPGA Using Dynamic Reconfiguration,” IEEE Transactions On Instrumentation And Measurement, vol.60,NO.6,June 2011.

    [39]Mohit Arora, ” The Art of Hardware Architecture: Design Methods and Techniques for Digital Circuits,” Springer, 2012.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE