簡易檢索 / 詳目顯示

研究生: 陳廼倫
Nai-Lun Chen
論文名稱: 兩段式時間至數位轉換器技術的2.4 GHz頻帶全數位頻率合成器晶片設計
A 2.4 GHz All-Digital Frequency Synthesizer Chip Design with Two-Step Time-to-Digital Converter Technology
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 陳國龍
Kuo-Lung Chen
張勝良
Sheng-Lyang Jang
溫俊瑜
Jiun-Yu Wen
徐敬文
Ching-Wen Hsue
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 全數位頻率合成器
外文關鍵詞: ADPLL
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,以鎖相迴路為主的頻率合成器大量被使用在無線通訊系統中。相對地,各式各樣的頻率合成器就被研發出來。本論文採用TSMC 0.18 um CMOS製程來實現頻段為2.4 GHz全數位之頻率合成器,其中電路採用兩段式時間至數位轉換器,目的為提高時間至數位轉換器之解析度,以改善整體頻率合成器的頻帶內雜訊。

    時間至數位轉換器採用延遲線架構,優點為可操作於高速,但此架構解析度受限於單一延遲元件,故解析度無法達到非常精細;若使用游標卡尺式,可達到極高的解析度,但取樣頻率會受到限制,無法操作在高速系統。此論文採用的數位至時間轉換器亦可改善解析度與取樣頻率之間做取捨的關係,進而可達到高速度以及高解析度的優點,提供給頻率合成器使用,最後以達成低相位雜訊、面積小、高解析度以及快速鎖定之優點。

    本電路在數位電路直流供給電壓1.8 V及類比電路直流供給電壓1.2 V下,量測結果顯示,中心頻率為2.37 GHz時,輸出信號功率為-6.82 dBm,鎖定時之相位雜訊為-115.89 dBc/Hz@1 MHz,功耗為12.9 mW,晶片面積為0.79 × 0.79 mm2。


    In recent years, PLL-based frequency synthesizers are widely used in wireless communication systems, and various frequency synthesizers have been developed relatively. This thesis adopts TSMC 0.18 um CMOS processing to realize an all-digital frequency synthesizer of 2.4 GHz band, wherein the circuit adopts a two-step time-to-digital converter (TDC) which aims at improving the time resolution, so as to reduce the in-band phase noise within the band of the frequency synthesizer in general.

    The TDC adopts gate delay line structure, which can operate in high speed. This type TDC time resolution is limited by the gate delay value, so it is hard to achieve high time resolution. Another TDC is the vernier delay line structure, which inherently has a high time resolution, but this structure cannot operate in high speed system. This proposed TDC, which can improve the alternative relationship between time resolution and sampling rate, so as to realize the high speed and high resolution property of the frequency synthesizers to finally achieve lower phase noise, smaller area, higher resolution and rapid locking.

    The digital circuit is supplied with 1.8 V DC while the analog circuit is supplied with 1.2 V DC. The measuring result shows that when center frequency is 2.37 GHz, the output signal power will be -6.82 dBm. After it has been locked, the phase noise is -115.89 dBc/Hz@1 MHz and the power consumption is 12.9 mW, while the chip area is 0.79 × 0.79 mm2.

    List of Figures III List of Tables VI Chapter 1 Introduction 1 1.1 Wireless Transceiver 1 1.2 Motivation 2 1.3 Focus and Contributions 3 1.4 Organization of This Thesis 3 Chapter 2 Charge Pump Frequency Synthesizer and All-Digital Frequency Synthesizer 5 2.1 Building Blocks of Charge Pump Frequency Synthesizer 5 2.1.1 Voltage-Controlled Oscillator (VCO) 6 2.1.1.1 Operation Principle of Oscillator 7 2.1.1.2 Ring Oscillator 8 2.1.1.3 LC-Tank Oscillator 9 2.1.2 Phase Frequency Detector (PFD) 12 2.1.3 Charge Pump (CP) 14 2.1.4 Loop Filter (LF) 15 2.1.4.1 First-Order Loop Filter 16 2.1.4.2 Second-Order Loop Filter 17 2.1.4.3 Third-Order Loop Filter 20 2.1.5 Frequency Divider 21 2.1.5.1 Multi-Modulus Divider 22 2.1.5.2 CML Divider and TSPC Divider 23 2.2 Building Blocks of All-Digital Frequency Synthesizer 24 2.2.1 Digitally Controlled Oscillator (DCO) 24 2.2.1.1 DAC Type LC-Tank Oscilator 25 2.2.1.2 MOS Varactor Array Type LC-Tank Oscillator 25 2.2.2 Time-to-Digital Converter (TDC) 26 2.2.2.1 Counter TDC 26 2.2.2.2 Vernier Delay Line TDC 27 2.2.2.3 Gate Delay Line TDC 28 2.2.3 Digital Loop Filter (DLF) 30 2.2.3.1 First-Order Digital Loop Filter 30 2.2.3.2 Second-Order Digital Loop Filter 31 2.3 Figures of Merit of a Frequency Synthesizer 32 2.3.1 Jitter 32 2.3.2 Phase Noise 33 2.3.3 Spurs 34 2.4 Frequency Synthesizer Paper Survey 35 2.5 Summary 42 Chapter 3 Chip Design a 2.4 GHz All-Digital Frequency Synthesizer with Two-Step Time-to-Digital Converter 43 3.1 Introduction 43 3.2 System Block Diagram 44 3.3 Building Block and Simulation 45 3.3.1 Complementary Cross-Coupled LC-Tank Oscillator 45 3.3.2 Two-Step Time-to-Digital Converter 50 3.3.3 First-Order PI Digital Loop Filter 57 3.3.4 Differential to Single-Ended Circuit 59 3.3.5 Programmable Divider 60 3.3.6 Overall System Simulation 64 3.4 Chip Measurements 65 3.4.1 RF Chip Layout Considerations 65 3.4.2 RF Chip Measurement Considerations 66 3.4.3 Chip Floor Plan and PCB Design 66 3.4.4 Test Environment Setup 68 3.4.5 Measured Results 69 3.4.6 Specifications and Performance Comparison 71 3.5 Summary 72 Chapter 4 Conclusions and Future Work 74 4.1 Conclusions 74 4.2 Future Work 75 Reference 76 Appendix : Chip Tapeout List 80

    [1]S. I. Liu, “Design and Realization of CMOS RF Frequency Synthesizer,” Master Thesis, 2001.
    [2]A. L. Lacaita, S. Levantino and C. Samori, Integrated Frequency Synthesizers for Wireless Systems, Cambridge University Pres, 2007.
    [3]A. Mohammadi, A. Ayatollahi, A. Abrishamifar and A. Beygi, “Frequency Synthesizer Settling Time and Phase Noise Issues For WLAN Transceiver Application in IEEE 802.11n Standard,” Int. ICEE '07 Conf., pp.1-5, no. 4, Apr. 2007.
    [4]P. J. Shie, “UWB RF Receiver Front-end Chip Design with On-Chip Transformer Circuit,” Master Thesis, 2008.
    [5]H. Bellescize, “La reception synchrone,” L’onde electrique, vol. 11, no. 5, pp.225-240, May. 1932.
    [6]H. J. Finden, “The frequency synthesizer,” IEEE J. Part III, vol. 90, no. 5, pp.165-80, May. 1943.
    [7]J. Savoj and B. Razavi, High-Speed CMOS Circuits for Optical Receivers, Kluwer, 2001.
    [8]B. Razavi, Design of Analog CMOS Integrated Circuits, New York, NY: McGraw Hill, 2000.
    [9]H. Zhang, G. Chen and N. Li, “A 2.4-GHz linear-tuning CMOS LC voltage-controlled oscillator,” Proceedings of the ASP-DAC, vol. 2, no. 1, pp. 799-802, Jan. 2005.
    [10]A. Kanli’c, “A 3.8 GHz Temperature Compensated CMOS LC-VCO for DECT Applications,” Master’s Thesis 2007.
    [11]A. Hajimiri and T. H. Lee, ”Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp.717-724, May. 1999.
    [12]S. Levantino, et. al., “Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Up conversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp.1003-1011, Aug. 2002.
    [13]M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp.1018–1024, Jul. 2001.
    [14]A. Goel, and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp.571-582, Mar. 2007.
    [15]B. Razavi, RF Microelectronics, Prentice Hall, NY, 1998.
    [16]F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. On Communications, vol. 28, no. 11, pp. 1849-1858, Nov. 1980.
    [17]W. O. Keese, An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops, National Semiconductor Application Note, May. 1996.
    [18]S. H. Yang, C. H. Lee, and K. R. Cho, “A CMOS Dual Modulus Prescaler Based on a New Charge Sharing Free D-Flip-Flop,” Prec. 14th Annual IEEE International ASIC/SOC Conf., no. 4, pp.276-280, Apr. 2001.
    [19]P. Y. Deng and J. F. Kiang, “A 5-GHz CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider and Differential Switched Capacitors,” IEEE Trans. Circuits Syst. I, vol. 56, no. 2, pp. 320-326, Feb. 2009.
    [20]S. L. Jang, C. F. Lee and J. C. Luo, “A CMOS LC Injection-Locked Frequency Divider with the Division Ratio of 2 and 3,” Microwave and Optical Technology Lett., no. 5, pp. 1263-1267, May. 2009.
    [21]S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-m CMOS Technology,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp.1039-1045, Jul. 2000.
    [22]S. T. Lee, S. J. Fang, D. J. Allstot, A. Bellaouar, A. Fridi, and P. Fontaine, “A 1.5V 28mA fully-integrated fast-locking quad-band GSM-GPRS transmitter with digital auto-calibration in 130nm CMOS,” ISSCC Dig. Tech. Papers, Paper No. 10.4, Feb. 2004.
    [23]J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-State Circuits, vol. 24, no. 2, pp.62-70, Feb. 1989.
    [24]T. Tokairin, M. Okada, M. Kitsunezuka, T. Maeda, and M. Fukaishi, “A 2.1-to-2.8-GHz Low-Phase-Noise All-Digital Frequency Synthesizer With a Time-Windowed Time-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2582-2590, Dec. 2010.
    [25]V. Kratyuk, P. K. Hanumolu, U. K. Moon, K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, vol. 54, no. 3, pp. 247-251, Mar. 2007. 
    [26]C. D. Su, “An All Digital PLL for Spread Spectrum Clock Generator,” Master Thesis, College Electrical Engineering & Computer Science, Jan. 2011.
    [27]J. Hancock, “Jitter-Understanding it, Measuring it, Eliminating it Part 3: Causes of Jitter,” High Frequency Electronics, no. 6, pp.28-44, Jun. 2004.
    [28]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. Custom IC Conf. Orlando, FL, no. 5, pp. 569-572, May. 2000.
    [29]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LCD VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, Jun. 2001.
    [30]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [31]X. Gao, E. A. M. Klumperink, M. Bohsali, B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
    [32]M. Song, I. Jung, S. Pamarti, and C. Kim, “A 2.4 GHz 0.1-Fref-Bandwidth All-Digital Phase-Locked Loop with Delay-Cell-Less TDC,” IEEE Trans. Circuits Syst. I, vol. 60, no. 12, pp. 3145-3151, Dec. 2013.
    [33]R. B. Staszewski et al., “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 220-224, Mar. 2006.
    [34]P. Dudek, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, 2, no. 2, pp. 240-247, Feb. 2000.
    [35]C. W. Yao, A. N. Willson, Jr., “A 2.8-3.2-GHz Fractional-N Digital PLL with ADC-Assisted TDC and Inductively Coupled Fine-Tuning DCO,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 698-710, Mar. 2013.
    [36]D. W. Jee, B. Kim, H. J. Park, and J. Y. Sim, “A 1.9-GHz Fractional-N Digital PLL with Subexponent ΔΣ TDC and IIR-Based Noise Cancellation,” IEEE Trans. Circuits Syst. II, vol. 59, no. 11, pp. 721-725, Nov. 2012.
    [37]K. Kim, Y. H. Kim, W. Yu, and S. Cho, “A 7 bit, 3.75 ps Resolution Two-Step Time-to-Digital Converter in 65 nm CMOS Using Pulse-Train Time Amplifier,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1009-1017, Apr. 2013.
    [38]C. M. Hsu, “Techniques for high-performance digital frequency synthesis and phase control,” PhD Thesis, Massachusetts Institute of Technology, Sep. 2008.
    [39]Y. H. Kao, RF Phase-Locked Loop Integrated Circuit Design, Tsang Hai Book Publishing Co, 2004. 
    [40]B. Chang, J. Park, and W. Kim, “A 1.2 GHz CMOS dual modulus prescaler using new dynamic d-type flip-flops,” IEEE J. Solid-State Circuits, vol. 31, no. 5, pp. 749–752, May. 1996.
    [41]Q. Hunag and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-465, Mar. 1996.
    [42]W. H. Chiu, Y. H. Huang, and T. H. Lin, “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1137-1149, Jun. 2010.
    [43]T. H. LEE, The Design of CMOS Radio-Frequency Integrated Circuit Second Edition, Cambridge, pp. 136-141, 2004.
    [44]B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [45]W. H. Chiu, Y. H. Huang, and T. H. Lin, “A 5 GHz Phase-Locked Loop Using Dynamic Phase-Error Compensation Technique for Fast Settling in 0.18-um CMOS,” IEEE Symposium on VLSI Circuits, no.7, pp. 128-129, Jun. 2009.
    [46]R. B Staszewski and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS. Hoboken, NJ: Wiley, 2006.
    [47]W. Yin, R. Inti, A. Elshazly, B. Young, and P. K. Hanumolu, “A 0.7-to-3.5 GHz 0.6-to-2.8 mW Highly Digital Phase-Locked Loop with Bandwidth Tracking,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1870-1880, Aug. 2011.
    [48]L. Xu, S. Lindfors, K. Stadius, and J. Ryynanen, “A 2.4-GHz Low-Power All-Digital Phase-Locked Loop,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1513-1521, Aug. 2010.
    [49]T. Wu, P. K. Hanumolu, K. Mayaram, and U. K. Moon, “Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 427–435, Feb. 2009.

    無法下載圖示 全文公開日期 2019/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE