簡易檢索 / 詳目顯示

研究生: 謝志昇
Chin-sheng Hsieh
論文名稱: 小型二足步行機器人製作與控制
The Development and Control of a Miniature Biped Walking Robot
指導教授: 施慶隆
Ching-long shih
口試委員: 劉昌煥
Chang-huan Liu
李文猶
wen-you Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 二足步行機器人動態步行FPGANIOSAI馬達
外文關鍵詞: Biped Robot, dyanmic walking, FPGA, NIOS, AIMotor
相關次數: 點閱:370下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為製作及發展具行走能力的小型二足步行機器人,本文藉由簡單的機構設計,並利用AI伺服馬達設計二足步行機器人。經由向量解析法,求取機器人的位置向量、建立機器人的動態方程式,並規劃二足步行機器人動態步行週期以及腰部與足部的軌跡。二足步行機器人使用單軸PD控制器控制各關節馬達的位置及力矩。本文使用Altera公司所發展的Nios嵌入式系統,此系統可藉由FPGA實現所需要的硬體以及使用C語言發展系統軟體。最後實驗證明所設計的小型二足步行機器人可以在地面上以每秒4公分之速度穩定的步行。


    For implementation and development of a miniature biped walking
    robot, this thesis utilizes simple mechanism design methods and uses to
    establish a prototype biped robot. The biped’s dynamic walking motion is
    planned by specifying trajectories of the hip and feet through biped
    kinematics and inverse kinematics. The biped control system uses singleaxis
    PD controller to control the position and the current of each joint
    motor. The control hardware system of the biped robot consists of a Nios’
    Development Kit with FPGA chips, and the control software is written in
    C programming language. Finally, the experimental results shows that the
    designed biped robot can walk in an even floor with a speed of 4 cm per
    second.

    第一章 緒論 1.1 前言 ...................................................1 1.2 文獻回顧 ...............................................2 1.3 研究目的 ...............................................6 第二章 二足步行機器人機構描述 2.1 機構設計簡介 ...........................................9 2.2 機構元件說明 .........................................12 2.3 機構設計流程 .........................................13 第三章 二足步行機器人數學模型 3.1 二足步行機器人模型及假設 .............................22 3.2 向量解析計算 .........................................24 3.3 二足機器人反運動學方程式 .............................27 3.4 動態平衡方程式 .......................................31 第四章 二足步行機器人步行軌跡規劃 4.1 步行模型定義 ...........................................34 4.2 動態步行週期規劃 .......................................35 第五章 二足步行機器人控制器設計與實現 5.1 二足步行機器人動態方程式建立 ...........................42 5.2 二足步行機器人控制器設計 ...............................45 5.3 二足步行機器人硬體架構 ...............................47 5.4 二足機器人步行控制器實現 ...............................52 第六章 實驗結果 6.1 AI馬達步級響應測試 ...................................56 6.2 二足步行機器人參數 ...................................58 6.3 二足步行機器人靜態重心計算 ...........................59 6.4 二足步行機器人動態步行實驗 ...........................62 第七章 結論與展望 7.1 結論 ...................................................68 7.2 未來展望 ..............................................69

    [1] Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N. and
    Tanie, K. “Planning walking patterns for a biped robot”, IEEE
    Transactions on Robotics & Automation, Vol. 17, No. 3, pp.280–289,
    June, 2001.
    [2] Kato, I. and Tsuiki, H. “The hydraulically powered biped walking
    machine with a high carrying capacity”, Fourth Symposium on
    External Extremities. Dubrovnik: Yugoslav Committee for Electronics
    and Automation.
    [3] Raibert, M . “Legged robots that balance”, MIT Press, Cambridge,
    MA. , 1986.
    [4] Yamataka, M., Nakanishi, H., Yamabuchi, K. and Nakamura, A.
    “Development of a small animal-type biped robot and its walking
    control system”, Proceedings of the IEEE-RAS International
    Conference on Humanoid Robots, pp. 197–204, 2001.
    [5] Shan, J., Junshi, C. and Jiapin, C. “Design of central pattern generator
    for humanoid robot walking based on multi-objective GA”,
    Proceedings of the IEEE/RSJ International Conference on Intelligent
    Robots and Systems, pp. 1930–1935, 2000.
    [6] Furusho, J., Akihito, S., Masamichi, S. and Eichi, K. “Realization of
    Bounce Gait in a Quadruped Robot with Articular–Joint -type legs”,
    Proceedings of the IEEE International Conference on Robotics and
    Automation, pp. 697–702, 1995.
    [7] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
    of Honda humanoid robot”, Proceedings IEEE International
    Conference on Robotics and Automation , pp. 1321 –1326, 1998.
    [8] H. Kitano, M. Fujita, S. Zrehen, and K. Kageyama , “Sony legged
    robot for RoboCup challenge”, Proceedings IEEE International
    Conference on Robotics and Automation, pp.2605 –2612, 1998.
    [9] A.Sano, J. Furusho, “Control of Torque Distribution for the BLR-G2
    Biped Robot”, Fifth International Conference on Robots in
    Unstructured Environments,’ 91 ICAR, Vol. 1, pp.729-734, 1991.
    [10] Cao Meifen, A. Kawamura, “An Evolutionary Design Scheme of
    Neural Oscillatory Network for Generation of Biped Walking
    Patterns”, 1998 5th International Workshop on Advanced Motion
    Control, pp.666-671, 1998.
    [11] Cao Meifen, A. Kawamura, “Generation of Humanoid Biped
    Walking Patern Using Neural Oscillatory Network”, IEEE/ASME
    International Conference on advanced Intelligent Mechatronics’97
    pp.81, 1997.
    [12] S. Hrose, “Design and Implementation of Intelligent Mobile Robots”,
    IEEE International Conference on Robotics and Automation,
    pp.171-175, 1996.
    [13] Martin, J. B.,Classical Mechanisms, Addsion- Wesley Publishers,
    Reading, MA, 1980.
    [14] Huang, Q., Nakamura, Y. and Inamura, T. “Humanoids walk with
    feedforward dynamic pattern and feedback sensory reflection”,
    Proceedings of the IEEE International Conference on Robotics and
    Automation, pp. 4220–4225, 2001.
    [15] F. Miyazaki and S. Arimoto, “A Control Theoretic Study on
    Dynamic Biped Locomotion”, ASME Journal of Dynamics, Systems,
    Measurement and Control, Vol. 102, pp. 232-239, 1980.
    [16] Cheng, M.-Y. and Lin, C.-S. “Genetic algorithm for control design of
    biped locomotion” , Proceedings of the IEEE International
    Conference on Robotics and Automation, pp. 1315–1320, 1995.
    [17] Arakawa, T. and Fukuda, T. “Natural motion trajectory generation of
    biped locomotion robot using genetic algorithm through energy
    optimization”, Proceedings of the 1996 IEEE International
    Conference on Systems, Man and Cybernetics, pp. 1495–1500,1996.
    [18] Goswami, A. “Postural stability of biped robots and the foot rotation
    indicator (FRI) point”, International Journal of Robotics Research
    18, pp.523–533, 2000.
    [19] Hirai, K., “Current and Future Perspective of Honda Humanoid
    Robot”, IEEE/RSI International Conf. On Intelligent Robots and
    Systems, pp. 500-508, 1997.
    [20] Song S.M and Waldron K.J., “Machines That Walks: The Adaptive
    Suspension Vehicle”. Cambridge, MA: MIT Press, 1998.
    [21] A.A. Grishin, A.M .Formal , sky, ,A.V. Lensky, , S.V. Zhitomirsky,
    “Dynamic Walking of a Vehicle With Two Telescopic legs
    Controlled by Two Drives”, The International Journal of Robotics
    Research, Vol. 13, No. 2, April 1984.
    [22] P.H. Channon, S.H. Hopkins and D.T. Pham, “Simulation and
    Optimization of Gait for a Bipedal Robot”, Math Comput Modelling ,
    pp.463-467, 1990.
    [23] C.L Golliday, JR and H. Hemami, “An Approach to Analyzing Biped
    Locomotion Dynamics and Designing Robot Locomotion Controls”,
    optimization”, Proceedings of the 1996 IEEE International
    Conference on Systems, Man and Cybernetics, pp. 1495–1500,1996.
    [18] Goswami, A. “Postural stability of biped robots and the foot rotation
    indicator (FRI) point”, International Journal of Robotics Research
    18, pp.523–533, 2000.
    [19] Hirai, K., “Current and Future Perspective of Honda Humanoid
    Robot”, IEEE/RSI International Conf. On Intelligent Robots and
    Systems, pp. 500-508, 1997.
    [20] Song S.M and Waldron K.J., “Machines That Walks: The Adaptive
    Suspension Vehicle”. Cambridge, MA: MIT Press, 1998.
    [21] A.A. Grishin, A.M .Formal , sky, ,A.V. Lensky, , S.V. Zhitomirsky,
    “Dynamic Walking of a Vehicle With Two Telescopic legs
    Controlled by Two Drives”, The International Journal of Robotics
    Research, Vol. 13, No. 2, April 1984.
    [22] P.H. Channon, S.H. Hopkins and D.T. Pham, “Simulation and
    Optimization of Gait for a Bipedal Robot”, Math Comput Modelling ,
    pp.463-467, 1990.
    [23] C.L Golliday, JR and H. Hemami, “An Approach to Analyzing Biped
    Locomotion Dynamics and Designing Robot Locomotion Controls”,
    75
    IEEE Transactions on Automation Control, AC-22-6, Vol. 22, No. 6,
    pp.963-972, 1997.
    [24] J. Furusho and M. Masubuchi, “A Theoretically Motivated Reduce
    Order Model for the Control of Dynamic Biped Locomotion”,
    Journal of Dynamic System, Measurement, and Control, pp. 155-163,
    June, 1987.
    [25] Y . Takahashi, Y . Tomatani, Y . Matsui, Y .Honda, and T .Miura,
    “Wire Driven Robot Hand”, Proceedings International Conference
    on Industrial Electronics, Control, and Instrumentation, pp. 1293,
    1997.
    [26] Chih-Lyang Hwang , “A trajectory Tracking of Biped Robots Using
    Fuzzy-Model-Based Sliding-Mode Control”, Proceeding of the 41th
    IEEE Conference on Decision and Control Las Vegas, Nevada USA,
    December 2002.
    [27] Mitsuharu Morisawa , Yasutaka Fujimoto, Toshiyuki Murakami,
    Kouhei Ohnishi, “A Walking Pattern Generation for Biped Robot
    with Parallel Mechanism by Considering Contact Force”, The 27th
    Annual conference of the IEEE Electronics Society.
    [28] G.S. Hornby, S. Takamura, J. Yakono, U. Hanagata, T. Yamamoto,
    “Evolving Robot Gaits with AIBO”, Proceeding of the 2000 IEEE
    International Conference on Robotics and Automation San
    Francisco .CA, April, 2000.
    [29] Jun Suzuki, Daiki Ito, Taka Shi, Kageyau, Mitsuharu, Morisawa,
    Kouhei, “A decentralized Real-time control for Bipel Robot”.
    [30] Daiki Ito, Toshiyuki Murakami, Kouhei Ohnishi, “An Approach to
    Generation of Smooth walking Pattern for Biped Robot”. Advanced
    Motion Control, 2002. 7th International Workshop on 3-5, pp.98 -103 ,
    July, 2002 .
    [31] Ysnshong Shan and Yoaram Koren, “Design and Motion Planning of a
    Mechanical Snake”. IEEE Transaction on system, man, and
    Cybernetics, Vol. 23, No. 4, pp.1091–1100, July/August, 1993.
    [32] Masaki Yamakita, Minoru Hashimoto, Takeshi Yamada, “Control of
    Locomotion and Head Configuration of 3D Snake Robot”.
    Proceedings of the 2003 IEEE International Conference on Robotics
    & Automation Taipei, Taiwan, pp.2055–2060, September 14-19, 2003.
    [33] Tomomichi Sugihara, Yoshihiko Nakamura, Hirochika Inoue,
    “Realtime Humanoid Generation through ZMP Manipulation based
    on Inverted Pendulum Control”. Proceedings of the 2002 IEEE
    International Conference on Robotics & Automation Washington DC,
    pp.1404–1409, May, 2002.
    [34] Shuuji Kajita, Kazuo Tani, “Adaptive Gait Control of a Biped Robot
    based on Realtime Sensing of the Ground Profile”. Proceedings of the
    1996 IEEE International Conference on Robotics & Automation
    Minneapolis, Minnesota- April6, pp.570–577, 1996.
    [35] Shuuji Kajita, Member IEEE, Tomio Yamaura, “Dynamic Walking
    Control of a Biped Robot Along a Potential Energy Conserving Orbit”.
    IEEE Transactions on Robotics & Automation, Vol. 8, No. 4,
    pp.430–438, August, 1992.
    [36] Ching-Long Shih, “Synthesis for biped Robot”, Robotica , Printed in
    united Kingdom ,Vol. 15, pp.599-607, 1997
    [37] C.L Shih and W.A.Gruver. “Control of Biped Robot in the Doublesupport
    Phase”. IEEE Transaction on systems, man & Cybernetics ,
    Vol. 22, No. 3 , pp.729–735, July Aug, 1992.
    [38] C.T. Chi , C.L Shih. “The Walking Trajectory Planning and Gait
    Control of Biped Robot”, The Applied Simulation and Modeling, July,
    in Banff Canada, 2000.
    [39] C.L Shih. “The Dynamics and Control of a Biped Robot with seven
    Degree of Freedom”. ASME Journal of Dynamic Systems
    Measurement and control Vol. 18, No. 4 , pp.683-690, December,
    1996.
    [40] 紀捷聰 , 二足步行機器人的設計與控制, 國立台灣科技大學
    電機工程系博士論文, 2001.
    [41] 陳澄峰 , 二足機器人行走模式研究, 大葉大學機械工程學系
    碩士論文, 2002.
    [42] AI MOTOR-601’S USER MANUAL, MegaRobotics Ltd, 2000.

    QR CODE