簡易檢索 / 詳目顯示

研究生: 蔡育維
Yu-wei Tsai
論文名稱: 基於視覺伺服之機器手臂射擊系統
Visual Servoing Based Robot Arm Shooting System
指導教授: 林其禹
Chyi-yeu Lin
口試委員: 林紀穎
Chi-ying Lin  
王文俊
Wen-june Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 機器手臂視覺伺服運動學射擊互動遊戲系統
外文關鍵詞: robot arm, visual servoing, dynamic, shooting, interaction game system
相關次數: 點閱:219下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目的為設計一使用工業型機械手臂的自動射擊系統並且以雷射裝置為介面來對互動遊戲中的虛擬氣球進行追蹤與射擊的動作。
自動射擊系統是基於視覺伺服控制的架構來設計的。藉由固定於工作空間中的攝影機,取得目標物資訊並且使用卡爾曼濾波器對其位置進行預測,來當作伺服控制器的輸入訊號。最後,使用機械手臂的賈氏矩陣關係產生機械手臂各軸的速度控制命令。互動遊戲系統使用攝影機為判斷裝置,如在投影屏幕的氣球上偵測到雷射點,即引爆氣球並且發出音效。經過實驗證實,自動射擊系統能成功的導引機械手臂對目標物進行追蹤與射擊動作。


The objective of research is to design an auto shooting system by using industrial robot arm with a laser device. It can track and shoot virtual balloons in an interaction game system.
Auto shooting system is designed by position based visual servo control frame. The object information is obtained by a fixed camera and Kalman filter is used to predict the position of the balloon which is subsequently used as an input signal of controller. Next, the Jacobian matrix of the robot arm is used to calculate the responsive angular velocity commands of each joint. The interaction game system uses other camera to play as a judge device. If the laser dot is found inside in the region of the balloon on the projection screen, the balloon is considered shot and will burst. Confirmed by a large number of experiments, the proposed shooting system can guide the robot arm to track and shoot the objects successfully.

摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 第1章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 1.3 章節簡介 4 第2章 視覺伺服控制 5 2.1 視覺伺服 5 2.2 機器手臂運動學 7 2.2.1 串聯式連桿座標系統 7 2.2.2 正向運動學 9 2.2.3 反向運動學 14 2.3 虛擬長度 19 2.4 控制器設計 20 第3章 影像處理系統 22 3.1 Camshift 演算法 22 3.1.1 機率分佈影像 23 3.1.2 Meanshift演算法 27 3.2 互動遊戲系統 28 3.2.1 雷射點偵測 28 3.2.2 遊戲功能設計 30 3.3 相機參數 32 3.3.1 相機內部參數 32 3.3.2 相機外部參數 38 第4章 追蹤控制系統架構 42 4.1 系統架構 42 4.2 多執行緒時間對等 44 4.3 卡爾曼濾波器 46 第5章 實驗結果與討論 51 5.1 實驗設備介紹 51 5.2 視覺伺服實驗 54 5.2.1 控制器實驗與結果 54 5.2.2 系統性能測試 59 第6章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 61 參考文獻 63 附錄 67 附錄一 Denso VS-6556G詳細規格 67 附錄二 控制器I/O配置 69 作者簡介 70

[1] S. Hutchinson, G.D. Hager and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Trans. on Robotics and Automation, Vol. 12, No.5, pp.651-670, 1996.
[2] G.S. Bell and W. Wilson, “Coordinated Controller Design for Position Based Robot Visual Servoing in Cartesian Coordinates,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1650–1655.
[3] P. Wunsch and G. Hirzinger, “Real-Time Visual Tracking of 3D Objects with Dynamic Handling of Occlusion,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 2868–2873.
[4] B. Yoshimi and P. Allen, “Visual Control of Grasping and Manipultion Tasks,” Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 575–582.
[5] J.A. Piepmeier, G.V. McMurray and H. Lipkin, “Tracking a Moving Target with Model Independent Visual Servoing: a Predictive Estimation Approach,“ Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium.
[6] K. Hashimoto and T. Noritsugu, “Performance and Sensitivity in Visual Servoing,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 2321–2326.

[7] G.D. Hager, “A Modular System for Robust Positioning Using Feedback from Stereo Vision,” IEEE Transactions on Robotics and Automation 13(4), pp. 582–595, 1997.
[8] C. Cedras and M. Shah, “Motion-Based Recognition: A Survey,” Image and Vision Computing, Vol. 13, pp. 129-154, 1995.
[9] J. Feddema and O. Mitchell, “Vision-Guided Servoing with Feature-Based Trajectory Generation,” IEEE Trans. on Robotics and Automation, Vol. 5, pp. 691-700, 1989.
[10] J.G. Allen, R.Y.D. Xu and J.S. Jin, “Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces,” Proceedings of the Pan-Sydney area workshop on Visual information processing, Australian Computer Society, pp. 3-7, 2004.
[11] B. Yang, H. Zhou and X. Wang, “Target Tracking using Predicted CamShift,“ Proceedings of 7th World Congress on Intelligent Control and Automation, June 25 - 27, 2008, Chongqing, China, pp.8501-8505.
[12] D.R. Olsen and T. Nielsen, “Laser Pointer Interaction,“ Proceedings of SIGCHI Conference on Human Factors in Computing Systems, Seattle, Washington, U.S., pp. 17-22, 2001.
[13] J.G. Lim, F. Sharifi and D.S. Kwon, “Fast and Reliable Camera-tracked Laser Pointer System Designed for Audience,“ The 5th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 529-534, 2008.
[14] 張進億,基於影像伺服之移動物體追蹤與夾取,國立台灣科技大學機械工程研究所碩士論文,台北,2009。
[15] J. Hill and W.T. Park, “Real Time Control of a Robot with a Mobile Camera,” Proc. 9th ISIR, Washington, D.C., pp. 233- 246, 1979.
[16] C. deBoor, “On Calculating with B-Splines,” Journal of Approximation Theory, Vol. 6, pp. 50-62, 1972.
[17]B. Roth, “Performance Evaluation of Manipulators from a Kinematic Viewpoint,” National Bureau of Standards Workshop on Performance Evaluation of Manipulators, 1975.
[18] L. Tsai and A. Morgan, “Solving the Kinematics of the Most General Six- and Five-degree-of-freedom Manipulators by Continuation Methods,” ASME Mechanisms Conference, Boston , Massachusetts, October 1984.
[19] L. Tsai, ”ROBOT ANALYSIS - The Mechanics of Serial and Parallel Manipulators,” pp. 184-185, A Wiley-Interscience Publication, 1999.
[20] F. Chaumette and S. Hutchinson, “Visual Servo Control. II. Advanced Approaches,” IEEE Robotics and Automation Magazine, Vol. 14, pp. 109-118, 2007.
[21] 網站,opencv中文網,http://www.opencv.org.cn
[22] website, http://www.cognotics.com/opencv/servo_2007_series/part_3/sidebar.html.
[23] F. Chaumette and S. Hutchinson, “Visual Servo Control Part I: Basic Approaches,“ IEEE Robotics & Automation Magazine, Vol. 13, pp. 82-90, 2006.
[24] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transaction of the ASME Journal of Basic Engineering, pp. 35-45,1960.
[25] G. Welch and G. Bishop, ”An Introduction to the Kalman Filter,” University of North Carolina at Chapel Hill, available at http://www.cs.unc.edu/~welch/kalman/, 2006.

QR CODE