簡易檢索 / 詳目顯示

研究生: 廖育青
Yu-ching Liao
論文名稱: 十二烷基硫酸鈉界面活性劑水溶液添加鹽類之吸附動力學探討
Adsorption Kinetic of Sodium Dodecylsulfate Aqueous Solution with NaCl
指導教授: 林析右
Shi-yow Lin
口試委員: 陳崇賢
Chorng-shyan Chern
謝之真
Chih-chen Hsieh
張光欽
Kung-chin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 41
中文關鍵詞: 十二烷基硫酸鈉離子型界面活性劑吸附動態表面張力
外文關鍵詞: SDS, ionic surfactant, adsorption, dynamic surface tension
相關次數: 點閱:222下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用懸掛氣泡影像數位化測量儀,來測量陰離子型界劑sodium dodecylsulfate (SDS) 水溶液 於不同NaCl濃度下的平衡暨動態表面張力。並將實驗所得的平衡及動態張力曲線與吸附模型(吸附等溫線、吸附動力方程式)做最佳化比對,以探討SDS界劑水溶液之吸附動力學。
    截至目前為止,僅有少數文獻將溶液中之靜電荷作用力或在氣-液界面附近形成之電雙層對吸、脫附暨擴散程序作用之效應,導入動態模型中。將上述之作用力應用於與動態表面張力數據比對者(提出動態表面張力曲線之計算方法者)僅見於三篇文獻。此乃因一般離子型界劑之動態表面張力通常在一秒左右即達平衡值,極難取得離子型界劑分子在水溶液中之完整的動態表面張力。在本研究中,我們添加30、100、以及300 mM NaCl於不同濃度之SDS水溶液中,藉由懸掛氣泡影像數位化測量儀可獲得較完整之動態表面張力曲線,進而參考文獻上已知的吸附模型,建立適用於離子型界劑分子之吸附等溫線和吸附動力方程式,以探討離子型界劑分子之吸附動力學。
    本研究使用三種吸附等溫線(非離子型Langmuir 模式,離子型Frumkin及離子型generalized Frumkin模式)來模擬平衡表面張力與動態表面張力,其中以離子型generalized Frumkin模式最能適切描述添加NaCl於SDS界劑水溶液之平衡張力曲線。若假設SDS水溶液中SDS分子吸附至氣-液界面之質傳機制為擴散控制時,以實驗數據與理論曲線做最佳化比對,獲知SDS分子之擴散係數(D)約為 0.4–1.5 (10-6 cm2/s) (100mM NaCl)或D=1–4 (10-6 cm2/s)(300mM NaCl);此D值皆低於Wilke-Chang equation所預測之理論擴散係數(5.78×10-6 cm2/s)。故SDS界劑分子於水中吸附至氣-液界面的質傳行為應非擴散控制。以混合控制之質傳機制、D = 5.78×10-6 cm2/s和離子型generalized Frumkin模式進行模擬,其理論動態張力曲線與實驗之動態張力數據相當吻合,故知SDS分子之質傳行為為混合控制。


    The dynamic surface tension (DST) for anionic surfactant SDS in aqueous NaCl solution onto a clean air-water interface was measured by using a video-enhanced pendant bubble tensionmeter. The electrostatic interaction between ionic molecules plays an important role in the adsorption kinetics. Relaxation profiles of surface tension for various aqueous SDS solutions with 30, 100 and 300 mM NaCl onto a freshly created air-water interface for were obtained. Comparison was made for the entire relaxation period of the tension data and the ionic model predictions. If the mass transport was diffusion-controlled, values of the diffusivity of SDS molecules was estimated from dynamic surface tension profiles and values of D= 0.4–1.5 (10-6 cm2/s) and D=1–4 (10-6 cm2/s) were obtained for solutions with 100 and 300 mM NaCl, respectively. These diffusivities are significantly lower than what the Wilke-Chang equation predicts (D = 5.78×10-6 cm2/s). However, the mixed controlled tension profiles of SDS solutions with D = 5.78×10-6 cm2/s and an ionic generalized model predicted the dynamic surface tension pretty well. Therefore, the adsorption of SDS was concluded to be of mixed diffusive-kinetic controlled.

    中文摘要............................................I 英文摘要............................................II 目 錄...........................................III 圖 目 錄...........................................IV 表 目 錄...........................................V 第一章 簡介.........................................1 1.1 界面活性劑的特性.................................1 1.2 界面活性劑分類...................................3 1.3 研究主題........................................4 第二章 文獻回顧......................................5 2.1 界劑分子在氣-液之吸附行為..........................5 2.2 非離子型界劑分子之質傳理論.........................7 2.2.1 Langmuir adsorption model....................9 2.2.2 Frumkin and generalized Frumkin models.......10 2.3 離子型界劑分子之質傳理論 ...........................12 2.4 界劑水溶液之表面張力量測 ...........................15 第三章 研究方法.......................................16 3.1 懸掛氣泡影像數位化測量儀............................16 3.1.1懸掛氣泡法量測界面張力之理論.....................16 3.1.2硬體設備.....................................18 3.2 其它實驗儀器......................................20 3.3 實驗藥品.........................................21 3.4 實驗方法.........................................21 3.4.1 溶液配製 ....................................21 3.4.2 實驗流程.....................................21 第四章 SDS分子在NaCl之吸附行為...........................24 4.1 SDS+30 mM NaCl 之實驗結果..........................24 4.2 SDS+100 mM NaCl 之實驗結果.........................25 4.3 SDS+300 mM NaCl 之實驗結果.........................27 4.4決定模式與參數.......................................29 4.5結果討論............................................32 第五章 結論與建議.......................................36 參考文獻...............................................37

    1.張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
    2.D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
    3.刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
    4.李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
    5.B. J. Palla, D. O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
    6.T. M. Pan, T. F. Lei, C. C. Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
    7.J. T. Davies, “Adsorption of long-chain ions I,” Proc. R. SOC. London, 1958, a245,417.
    8.J. T. Davies, “Adsorption of long-chain ions Ⅱ,” Proc. R. SOC. London, 1958, a245 426.
    9.S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics,” Colloid Polym. Sci., 1983, 261, 335.
    10.R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. Numerical calculations of the influence of a quasiequilibrium electric double layer,” Colloid Polym. Sci., 1985, 263, 420.
    11.R. P. Borwanker, D. T. Wasan, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 2.Numerical calculations of the influence of a quasi-equilibrium electric double layer,” Chem. Eng. Sci., 1986, 41, 199.
    12.R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces,” Chem. Eng. Sci., 1988, 43, 1323.
    13.S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 3.Generalization of the model,” Chem. Eng. Sci., 1991, 269, 923.
    14.C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface,” Colloids Surfaces, 1992, 69, 189.
    15.C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate,” Colloid Polym. Sci, 1994, 272, 447.
    16.C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
    17.S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    18.V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analyses with fluorescence images,” Langmuir, 19.
    19.S. Hachisua, “Equation of state of ionized monolayers,” J. Colloid Interface Sci., 1970, 33, 445.
    20.V. V. Kalinin, C. J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces,” Colloids Surf. A., 1996, 114, 337.
    21.H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    22.H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    23.P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment,” J. Phys. Chem. B, 1998, 102, 10948.
    24.P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of Salts of various valency,” Langmuir, 1999, 15, 2351.
    25.K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity,” Langmuir, 2000, 16, 2942.
    26.A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models,” Colloids Surf. A., 2001, 178, 1.
    27.P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces,” Langmuir, 2002, 18, 2506.
    28.V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations,” Langmuir, 2002, 18, 9106.
    29.G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions,” Colloids Surf. A., 2003, 222, 213.
    30.P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces I. sodium dodecyl sulfate and dodecanol,” Langmuir, 2003, 19, 504.
    31.A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems,” J. Colloid Interface Sci., 2003, 263, 606.
    32.D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface,” Langmuir, 2004, 20, 4436.
    33.T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase,” Colloids Surf. A., 2005, 261, 29.
    34.G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,” Colloids Surf. A., 2005, 261, 65.
    35.P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface,” Langmuir, 2005, 21, 3436.
    36.I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants,” Adv. Colloid Interface Sci., 2006, 123, 189.
    37.G. Para, P. Warszynski, A. Lips, “ACationic surfactant adsorption in the presence of divalent ions,” Colloids Surf. A., 2007, 300, 346.
    38.J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the Role of alkyl chain length and electrolyte and comparison with theoretical predictions,” Langmui., 2007, 23, 3128.
    39.E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants,” Colloids Surf. A., 2008, 319, 29.
    40.J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface,” Langmuir, 2008, 24, 3171.
    41.S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, 1991.
    42.G. D. J. Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
    43.P. C. Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
    44.K. Stebe, S. Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego; Chapter 2, 2001.
    45.R. Y. Tsay, S. C. Yan, S. Y. Lin, “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics,” Rev. Sci. Instrum., 1995, 66, 5065.
    46.J. F. Baret, “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface,” J. Colloid Interface Sci., 1969, 30, 1.
    47.R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge; Chapters 1 and 3, 1973.
    48.V. B. Fainerman, S. V. Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
    49.A. Z. Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
    50.S. Y. Lin, T. L. Lu, W. B. Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
    51.S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
    52.Y. C. Lee, Y. B. Liou, R. Miller, H. S. Liu, S. Y. Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
    53.D. O. Johnson, K. J. Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
    54.J. F. Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
    55.R. P. Borwankar, D. T. Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
    56.D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
    57.C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
    58.V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
    59.R. Miller, K. Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
    60.P. Joos, G. Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
    61.C. H. Chang, E. I. Franses, “Techniques to measure dynamic surface tension,” Chem. Eng. Sci., 1994, 49, 313.
    62.S. Y. Lin, K. Mckeigne, C. Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
    63.S. Y. Lin, K. Mckeigne, C. Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
    64.C. A. Maclleod, C. J. Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
    65.V. B. Fainerman, S. V. Lylyk, “Dynamic Surface Tension in Concentrated Solutions of CnEm Surfactants: A Comparison between the Theory and Experiment,” Kolloid. Z, 1982, 44, 598.
    66.S. Y. Lin, K. Mckeigne, C. Malderelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
    67.de Laplace, P. S. Mechanique Celeste, Supplement to book, 1806, 10.
    68.C. M. Persson, A. P. Jonsson, “Testing the Gouy–Chapman theory by means of surface tension measurements for SDS–NaCl–H2O mixtures,” J. Colloid Interface Sci., 2003, 267, 151.

    QR CODE