簡易檢索 / 詳目顯示

研究生: 蔡嘉瑩
Chia-Ying Tsai
論文名稱: 非均相觸媒之乙酰丙酸乙酯合成反應動力行為研究
Kinetic Behavior Study on the Synthesis of Ethyl Levulinate over Heterogeneous Catalyst
指導教授: 李明哲
Ming-Jer Lee
口試委員: 李豪業
Hao-Yeh Lee
林祥泰
Shiang-Tai Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 159
中文關鍵詞: 乙酰丙酸乙酯吸附強度模式關聯
外文關鍵詞: ethyl levulinate, adsorption strengths, data fitting
相關次數: 點閱:160下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用批式反應器探討由乙酰丙酸與乙醇合成乙酰丙酸乙酯合成反應之非均相反應動力行為,反應中使用酸性陽離子交換樹脂Amberlyst 39為觸媒。實驗操作於328.15 K至348.15 K之間,此外,並探討(醇/酸)進料莫耳比、觸媒質傳阻力以及觸媒添加量之效應。
    反應動力實驗結果顯示,反應速率隨著反應溫度、(醇/酸)進料莫耳比、觸媒量以及轉速提高而加快,而昇高反應溫度與(醇/酸)進料莫耳比也會提升酸之平衡轉化率。經由吸附平衡實驗結果得知,乙酰丙酸乙酯之合成反應中各成分於Amberlyst 39之吸附強度依序為水 > 乙醇 > 乙酰丙酸 > 乙酰丙酸乙酯。
    乙酰丙酸乙酯合成反應動力數據分別以理想溶液擬均相模式(IQH)、非理想溶液擬均相動力模式(NIQH)、Eley-Rideal(ER)模式、Langmuir-Hinshelwood-Hougen-Watson(LHHW)模式以及LHHW with Ka (LHHW-Ka)模式關聯,並求得最適化的動力參數值,NRTL模式則用於計算各反應成分之活性係數,關聯的結果顯示LHHW模式為描述乙酰丙酸乙酯合成反應的非均相催化動力行為的最佳模式。


    The heterogeneous kinetics behavior was investigated with a batch reactor for the synthesis of ethyl levulinate from levulinic acid and ethanol over cation-exchange resins, Amberlyat 39. The experiments were conducted at tempertures from 328.15 K to 348.15 K. Additionally, the effects of molar ratio of ethanol to acid in the feed stream, the mass transfer resistances on the catalytic reaction, and the different levels of catalyst loadings were also observed.
    The reaction rate of acid increased with increase of reaction temperature, molar ratio of ethanol to acid in the feed stream, catalyst loading, and rotational speed. Moreover, the equilibrium conversion of acid increased with increase of reaction temperature and molar ratio of methanol to acid in the feed stream. The relative adsorption strengths of the reacting species were determined by adsorption experiments. The results indicated that the magnitude of adsorption strengths on Amberlyst 39 followed the order of water > ethanol > levulinic acid > ethyl levulinate .
    The kinetic data of the synthesis of methyl levulinate were correlated with the ideal-quasi-homogeneous (IQH), the non-ideal-quasi-homogeneous (NIQH) the Eley-Rideal (ER), the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and the Langmuir-Hinshelwood-Hougen-Watson with Ka (LHHW-Ka) models, respectively. The optimal values of the kinetic parameters were determined from the data fitting. The NRTL model was used to calculate the activity coefficients for each reacting species. The LHHW model yielded the best representation for the kinetic behavior of heterogeneous catalytic synthesis of ethyl levulinate.

    第一章 緒論 1-1 前言 1-2文獻回顧 1-3 本研究之重點 第二章 反應動力實驗 2-1 酯化反應動力數據量測 2-2 藥品 2-3 實驗步驟 2-4 組成分析 2-5 數據處理 2-6 動力反應實驗結果 2-7 結果與討論 第三章 等溫吸附平衡實驗 3-1 雙成份系統吸附平衡測量 3-2藥品 3-3實驗步驟 3-4數據處理 3-5吸附實驗結果 3-6 吸附實驗數據關聯結果 第四章 動力模式 4-1 動力模式 4-2理想溶液擬均相動力模式 4-3非理想溶液動力模式 4-4 速率常數與吸附常數的訂定 4-5乙酰丙酸乙酯之動力模式關聯結果 4-6 非理想溶液之平衡常數 4-7 Langmuir-Hinshelwood-Hougen-Watson with Ka (LHHW-Ka)動力模式 第五章 結論與建議 5-1 結論 5-2 建議與注意事項 參考文獻 符號說明

    Abrams, D. S. and J. M. Prausnitz, “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems,” AIChE J., Vol. 21, pp. 116-128 (1975).

    Akbay, E. O. and M. R. Altıokka, "Kinetics of Esterification of Acetic Acid with n-Amyl Alcohol in the Presence of Amberlyst-36," Applied Catalysis A: General, Vol. 396, pp. 14-19 (2011).

    Akyalcın, S. and M. R. Altıokka, "Kinetics of Esterification of Acetic Acid with 1-Octanol in the Presence of Amberlyst 36," Applied Catalysis A: General, Vol. 429–430, pp. 79-84 (2012).

    Ali, S. H., “Kinetics of Catalytic Esterification of Propionic Acid with Different Alcohols over Amberlyst 15,” Int. J. Chem. Kinet., Vol. 41, pp. 432-448 (2009).

    Ali, S. H. and S. Q. Merchand, “Kinetic Study of Dowex 50 Wx8-Catalyzed Esterification and Hydrolysis of Benzyl Acetate,” Ind. Eng. Chem. Res., Vol. 48, pp. 2519-2532 (2009).

    AL-Jarallah, A. M., M. A. B. Siddiqui, and A. K. K. Lee, “Kinetics of Methyl Tertiary Butyl Ether Synthesis Catalyzed by Ion Exchange Resin,” Cand. J. Chem. Eng., Vol. 66, pp. 802-807 (1988).

    Altiokka, M. R. and A. Citak, “Kinetic Study of Esterification of Acetic Acid with Isobutanol in the Presence of Amberlite Catalyst,” Applied Catalysis A: General, Vol. 239, pp. 141-148 (2003).

    Altiokka, M. R. and E. Odes, “Reaction Kinetics of the Catalytic Esterification of Acrylic Acid with Propylene Glycol,” Applied Catalysis A: General, Vol. 362, pp. 115-120 (2009).

    Aranda, D. A. G., R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Lett., Vol. 122 pp. 20-25 (2008).

    Asthana, N. S., A. K. Kolah, D. T. Vu, C. T. Lira, and D. J. Miller, “A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers,” Ind. Eng. Chem. Res., Vol. 45, pp. 5251-5257 (2006).

    Blagov, S., S. Parada, O. Bailer, P. Moritz, D. Lam, R. Weinand, and H. Hasse, “Influence of Ion-Exchange Resin Catalysts on Side Reactions of the Esterification of n-Butanol with Acetic Acid,” Chem. Eng. Sci., Vol. 61, pp. 753-765 (2006).

    Calvar, N., B. Gonzalez, and A. Dominguez, “Esterification of Acetic Acid with Ethanol: Reaction Kinetics and Operation in a Packed Bed Distillation Column,” Chemical Engineering and Processing, Vol. 46, pp. 1317-1323 (2007).

    Chen, X., Z. Xu, and T. Okuhara, “Liquid Phase Esterification of Acrylic Acid with 1-Butanol Catalyzed by Solid Acid Catalysts,” Applied Catalysis A: General, Vol. 180, pp. 261-269 (1998).

    Chandra Shekara B. M., C. Ravindra Reddy, C. R. Madhuranthakam, B. S. Jai Prakash, and Y. S. Bhat, “Kinetics of Esterification of Phenylacetic Acid with p-Cresol over H-β Zeolite Catalyst under Microwave Irradiation,” Ind. Eng. Chem. Res., Vol. 50, pp.3829–3835 (2011).

    Dassy, S., H. Wiame, and F. C. Thyrion, “Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalyzed by Cation Exchange Resin,” J. Chem. Tech. Biotechnol., Vol. 59, pp. 149-156 (1994).

    De Paiva, E. J. M., V.Graeser, F.Wypych, and M.L.Corazza, "Kinetics of Non-Catalytic and ZnL2-Catalyzed Esterification of Lauric Acid with Ethanol," Fuel Vol. 117, Part A, pp. 125-132 (2013).

    Delgado, P., M. T. Sanz, and S. Beltran, “Kinetic Study for Esterification of Lactic Acid with Ethanol and Hydrolysis of Ethyl Lactate Using an Ion-Exchange Resin Catalyst,” Chemical Engineering and Processing, Vol. 126, pp. 111-118 (2007).

    Deshmane, V. G., P. R. Gogate, and A. B. Pandit, “Ultrasound Assisted Synthesis of Isopropyl Esters from Palm Fatty Acid Distillate,” Ultrasonics Sonochemistry, Vol. 16, pp. 345-350 (2009).

    Devulapelli, V. G. and H.-S. Weng, “Synthesis of Cinnamyl Acetate by Solid-Liquid Phase Transfer Catalysis: Kinetic Study with a Batch Reactor,” Catalysis Communications, Vol. 10, pp. 1638-1642 (2009).

    Figueiredo, K. C. D. S., V. M. M. Salim, and C. P. Borges, “Synthesis and Characterization of a Catalytic Membrane for Pervaporation-Assisted Esterfication Reactors,” Catalysis Today, Vol. 133-135, pp. 809-814 (2008).

    Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).

    Gangadwala, J., S. Mankar, S. Mahajani, A. Kienle, and E. Stein, “Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts,” Ind. Eng. Chem. Res., Vol. 42, pp. 2146-2155 (2003).

    Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection- 1,” Lehrstuhl Technische Chemie B, Universitat Dortmund, Frankfurt, Germany, pp.115 (1977a).

    Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection- 1,” Lehrstuhl Technische Chemie B, Universitat Dortmund, Frankfurt, Germany, pp.268 (1977b).

    Gonzalez, J. C., and J. R. Fair, “Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column. 1. Reactive Kinetics, Chemical Equilibrium, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., Vol. 36, pp. 3833-3844 (1997).

    Grob, S. and H. Hasse, “Reaction Kinetics of the Homogeneously Catalyzed Esterification of 1-Butanol with Acetic Acid in a Wide Range of Initial Compositions,” Ind. Eng. Chem. Res. , Vol. 45, pp. 1869-1874 (2006).
    Hasanoglu, A., Y. Salt, S. Keleser, S. Ozkan, and S. Dincer, “Pervaporation Separation of Ethyl Acetate-Ethanol Binary Mixtures using Polydimethylsiloxane Membranes,” Chemical Engineering and Processing, Vol. 44, pp. 375-381 (2005).

    Hasanoglu, A., Y. Salt, S. Keleser, S. Ozkan, and S. Dincer, “Pervaporation Separation of Organics from Multicomponent Aqueous Mixtures,” Chemical Engineering and Processing, Vol. 46, pp. 300-306 (2007).

    Hasanoglu, A., Y. Salt, S. Keleser, and S. Dincer, “The Esterification of Acetic Acid with Ethanol in a Pervaporation Membrane Reactor,” Desalination, Vol. 245, pp. 662-669 (2009).

    Huang, Y. S. and K. Sundmacher, “Kinetic Study of Propyl Acetate Synthesis Reaction Catalyzed by Amberlyst 15,” International Journal of Chemical Kinetics , Vol. 10, pp. 245-253 (2006).

    Huber, G. W., Iborra, S. and Corma, A. “Synthesis of Transportation Fuels from Biomass,” Chemistry, Catalysts, and Engineering. Chem. Rev. 106, 4044−4098 (2006).

    Jong, M. C. de, R. Feijt, E. Zondervan, T. A. Nijhuis, and A. B. de Haan, “Reaction Kinetics of the Esterification of Myristic Acid with Isopropanol and n-Propanol Using p-Toluene Sulphonic Acid as Catalyst,” Applied Catalysis A: General, Vol. 365, pp. 141-147 (2009).

    JagadeeshBabu, P. E., K. Sandesh, and M. B. Saidutta, “Kinetics of Esterification of Acetic Acid with Methanol in the Presence of Ion Exchange Resin Catalysts,” Ind. Eng. Chem. Res., Vol. 50, pp.7155-7160 (2011).

    Joshi, H., B.R., Moser, J. Toler, W.F. Smith, and T. Walker, "Ethyl Levulinate: A Potential Bio-based Diluent for Biodiesel which Improves Cold Flow Properties," Biomass and Bioenergy, Vol. 35, pp. 3262-3266 (2011).

    Kirbaslar, S. I., H. Z. Terzioglu, and U. Dramur, “Catalytic Esterification of Methyl Alcohol with Acetic Acid,” Chinese J. Chem. Eng., Vol. 9, pp. 90-96 (2001).

    Kolah, A. K., N. S. Asthana, D. T. Vu, C. T. Lira, and D. J. Miller, “Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol,” Ind. Eng. Chem. Res. , Vol. 46, pp. 3180-3187 (2007).

    Lee, M. J., J. Y. Chiu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and n-Butanol over Amberlyst 35,” Ind. Eng. Chem. Res., Vol. 41, pp. 2882-2887 (2002).

    Lee, M. J., P. L. Chou, and H. M. Lin, “Kinetics of Synthesis and Hydrolysis of Ethyl Benzoate over Amberlyst 39,” Ind. Eng. Chem. Res., Vol. 44, pp. 725-732 (2005).

    Lee, M. J., H. T. Wu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and Amyl Alcohol over Dowex,” Ind. Eng. Chem. Res., Vol. 39, pp. 4094-4099 (2000).
    Lilja, J., J. Aumo, T. Salmi, D. Yu. Murzin, P. Maki-Arvela, M. Sundell, K. Ekman, R. Peltonen, and H. Vainio, “Kinetics of Esterification of Propanoic Acid with Methanol over a Fibrous Polymer-Supported Sulphonic Acid Catalyst,” Applied Catalysis A: General, Vol. 228, pp. 253-267 (2002).

    Lilja, J., D. Yu. Murzin, T. Salmi, J. Aumo, P. Maki-Arvela, and M. Sundell, “Esterification of Different Acids over Heterogeneous and Homogeneous Catalysts and Correlation with Taft Equation,” J. Molecular Catalysis A: Chem., Vol. 182-183, pp. 555-563 (2002).

    Lilja, J., J. Warna, T. Salmi, L. J. Pettersson, J. Ahlkvist, H. Grenman, M. Ronnholm, and D. Yu. Murzin, “Esterification of Propanoic Acid with Ethanol, 1-Propanol and Butanol over a Heterogeneous Fiber Catalyst,” Chem. Eng. J., Vol. 115, pp. 1-12 (2005).

    Liu, W. T. and C. S. Tan, “Liquid-Phase Esterification of Propionic Acid with n-Butanol,” Ind. Eng. Chem. Res., Vol. 40, pp. 3281-3286 (2001).

    Liu, Y., E. Lotero, and J. G. Goodwin Jr., “A Comparison of the Esterification of Acetic Acid with Methanol Using Heterogeneous Acid Catalysis,” Journal of Catalysis, Vol. 242, pp. 278-286 (2006).

    Ilgen, O., "Investigation of Reaction Parameters, Kinetics and Mechanism of Oleic Acid Esterification with Methanol by Using Amberlyst 46 as a Catalyst." Fuel Processing Technology, Vol. 124, pp. 134-139 (2014).

    Mascal, M., and E.B. Nikitin, “High-Yield Conversion of Plant Biomass into the Key Value-Added Feedstocks 5-(Hydroxymethyl) Furfural, Levulinic Acid, and Levulinic Esters via 5-(Chloromethyl) Furfural,” Green Chem., Vol. 12, pp.370–373 (2010).

    Mahajani, S. M., “Reactions of Glyoxylic Acid with Aliphatic Alcohols Using Cationic Exchange Resins as Catalysts,” Reactive & Functional Polymers, Vol. 43, pp. 253-268 (2000).

    Maki-Arvela, P., T. Salmi, M. Sundell, K. Ekman, R. Peltonen, and J. Lehtonen, “Comparison of Polyvinybenzene and Polyolefin Supported Sulphonic Acid Catalysts in the Esterification of Acetic Acid,” Applied Catalysis A: General, Vol. 184, pp. 25-32 (1999).

    Malone, M. F. and M. F. Doherty, “Finding the Right Angle,” CAST Communication, Vol. 20, pp. 5-12 (1997).

    Mazzotti, M., B. Neri, D. Gelosa, A. Kruglov, and M. Morbidelli, “Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins,” Ind. Eng. Chem. Res., Vol. 36, pp. 3-10 (1997).

    Michalkiewicz, B., M. Jarosinska, and I. Lukasiewicz, “Kinetic Study on Catalytic Methane Esterification in Oleum Catalyzed by Iodine,” Chem. Eng. J., Vol. 154, pp. 156-161 (2009).

    National Institute of Standards and Technology (NIST) Chemistry WebBook (http:// webbook.nist.gov/chemistry/).

    Orjuela, A., A. J. Yaneza, A. Santhanakrishnan, C. T. Lira, and D. J. Miller, “Kinetics of Mixed Succinic Acid/Acetic Acid Esterification with Amberlyst 70 Ion Exchange Resin as Catalyst,” Chem. Eng. J., Vol. 188, pp. 98-107 (2012).
    Park, J. Y., D. K. Kim, and J. S. Lee, “Esterification of Free Fatty Acids Using Water-Tolerable Amberlyst as a Heterogeneous Catalyst,” Bioresource Technol., Vol. 101, pp. S62-S65 (2010).

    Pasias, S., N. Barakos, C. Alexopoulos, and N. Papayannakos, “Heterogeneously Catalyzed Esterification of FFAs in Vegetable Oils,” Chem. Eng. Technol., Vol. 29, pp. 1365-1371 (2006).

    Pasquale G., P. Vazquez, G. Romanelli, and G. Baronetti, “Catalytic Upgrading of Levulinic Acid to Ethyl Levulinate Using Reusable Silica-Included Wells-Dawson Heteropolyacid as Catalyst,” Catal. Commun., Vol.18, pp. 115-120 (2012).

    Peters, T. A., E. Benes, A. Holmen, and J. T. F. Keurentjes, “Comparison of Commercial Solid Acid Catalysts for the Esterification of Acetic Acid with Butanol,” Applied Catalysis A: General, Vol. 297, pp. 182-188 (2006).

    Phan, A. N. and T. M. Phan, “Biodiesel Production from Waste Cooking Oils,” Fuel, Vol. 87, pp. 3490-3496 (2008).

    Pipus, G., I. Plazl, and T. Koloini, “Esterification of Benzoic Acid in Microwave Tubular Flow Reactor,” Chem. Eng. J., Vol. 76, pp. 239-245 (2000).

    Peng, L., L. Lin, and H. Li. Conversion of Biomass into Levulinate Esters as Novel Energy Chemicals, Process in Chemistry , Vol.24, pp.801 – 809 (2012).

    Pinnarat, T. and P. E. Savage. "Noncatalytic Esterification of Oleic Acid in Ethanol," J. Supercrit. Fluids, Vol.53, 53-59 (2010).

    Popken, T., L. Gotze, and J. Gmehling, “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis,” Ind. Eng. Chem. Res., Vol. 39, pp. 2601-2611 (2000).

    Rehfinger, A. and U. Hoffmann, “Kinetics of Methyl Tertiary Butyl Ether Liquid Phase Synthesis Catalyzed by Ion Exchange Resin - I. Intrinsic Rate Expression in Liquid Phase Activities,” Chem. Eng. Sci., Vol. 45, pp. 1605-1617 (1990).

    Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Function for Liquid Mixtures,” AIChE J., Vol. 14, pp.135-144 (1968).

    Rattanaphra, D., A. P. Harvey, A. Thanapimmetha, and P. Srinophakun, “Kinetic of Myristic Acid Esterification with Methanol in the Presence of
    Triglycerides over Sulfated Zirconia,” Renewable Energy., Vol. 36, pp. 2679-2686 (2011).

    Sanz, M. T., R. Murga, and J. L. Cabezas, “Autocatalyzed and Ion-Exchange-Resin-Catalyzed Esterification Kinetics of Lactic Acid with Methanol,” Ind. Eng. Chem. Res., Vol. 41, pp. 512-517 (2002).

    Schmid, B., M. Doker, and J. Gmehling, “Esterification of Ethylene Glycol with Acetic Acid Catalyzed by Amberlyst 36,” Ind. Eng. Chem. Res., Vol. 47, pp. 698-703 (2008).

    Schmitt, M., and H. Hasse, “Chemical Equilibrium and Reaction Kinetics of Heterogeneously Catalyzed n-Hexyl Acetate Esterification,” Ind. Eng. Chem. Res., Vol. 45, pp. 4123-4132 (2007).

    Schwarzer, S., and U. Hoffmann, “Experimental Reaction Equilibrium and Kinetics of the Liquid-phase Butyl Acrylate Synthesis Applied to Reactive Distillation Simulations,” Chem. Eng. Technol., Vol. 25 , pp. 975-980 (2002).

    Selyakova, V. A., G. F. Vytnov, and A. P. Sineokov, “Study of the Esterification of Acrylic Acid by Butyl Alcohol,” Russ. J. Phys. Chem. (Engl. Transl.), Vol. 50, pp. 1692-1694 (1976).

    Seo, Y. and W. H. Hong, “Kinetics of Esterification of Lactic Acid with Methanol in the Presence of Cation Exchange Resin Using a Pseudo- Homogeneous Model,” J. Chem. Eng. Japan, Vol. 33, pp. 128-133 (2000).

    Song, W., G. Venimadhavan, J. M. Manning, M. F. Malone, and M. F. Doherty, “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., Vol. 37, pp. 1917-1928 (1998).

    Steele, W. V., R. D. Chirico, A. B. Cowell, S. E. Knipmeyer, and A. Nguyen, “Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, tert-Amyl Methyl Ether, trans-Crotonaldehyde, and Diethylene Glycol,” J. Chem. Eng. Data, Vol. 47, pp. 667-688 (2002).

    Su, C. H., C. C. Fu, J. Gomes, I. M. Chu, and W. T. Wu, “A Heterogeneous Acid-Catalyzed Process for Biodiesel Production from Enzyme Hydrolyzed Fatty Acids,” AIChE J., Vol. 54, pp. 327-336 (2008).

    Teo, H. T. R. and B. Saha, “Heterogeneous Catalyzed Esterification of Acetic Acid with Isoamyl Alcohol: Kinetic Studies,” Journal of Catalysis, Vol. 228, pp. 174-182 (2004).

    Tesser, R., M. D. Serio, M. Guida, M. Nastasi, and E. Santacesaria, “Kinetics of Oleic Acid Esterification with Methanol in the Presence of Triglycerides,” Ind. Eng. Chem. Res., Vol. 44, pp. 7978-7982 (2005).

    Tesser, R., L. Casale, D. Verde, M. Di Serio, and E. Santacesaria, “Kinetics of Free Fatty Acids Esterification: Batch and Loop Reactor Modeling,” Chem. Eng. J., Vol 154, pp. 25-33 (2009).

    Thangavelu, S. K., A.S., Ahmed, and F.N., Ani, “Bioethanol Production from Sago Pith Waste Using Microwave Hydrothermal Hydrolysis Accelerated by Carbon Dioxide,” Applied Energy, Vol. 128,pp. 277-283 (2014).

    Tochigi, K., H. Takahara, Y. Shiga, and Y. Kawase, “Isobaric Vapor-Liquid Equilibria for Water + Propylene Glycol Monomethyl Ether (PGME), Water + Propylene Glycol Monomethyl Ether Acetate (PGMEA), and PGME + PGMEA at Reduced Pressures,” Fluid Phase Equilib., Vol. 260, pp. 65-69 (2007).

    Toit, E., R. Schwarzer, and W. Nicol, “Acetone Condensation on a Cation Exchange Resin Catalyst: The Pseudo Equilibrium Phenomenon,” Chem. Eng. Sci., Vol. 59, pp. 5545-5550 (2004).

    Toukoniitty, B., J.-P. Mikkola, K. Eranen, T. Salmi, and D. Yu Murzin, “Esterification of Propionic Acid under Microwave Irradiation over an Ion-Exchange Resin,” Catalysis Today, Vol. 100, pp. 431-435 (2005).
    TRC Thermodynamic Table: Non-Hydrocarbons, Thermodynamic Research Center, The Texas A & M University System: College Station, TX (1993).

    Tsao, J. C. Y., T. C. Huang, and H. S. Weng, “Kinetic Studies for the Preparation of Itaconates by Continuous-Flow and Fixed-Bed Methods,” Ind. Eng. Chem. Process Des. Dev., Vol. 7, pp. 401-409 (1968).

    Tsai, Y.-T., H. M. Lin, and M. J. Lee, "Kinetics Behavior of Esterification of Acetic Acid with Methanol over Amberlyst 36," Chem. Eng. J., Vol.171, pp. 1367-1372(2011).

    Xu, Z. P. and K. T. Chuang, “Kinetics of Acetic Acid Esterification over Ion Exchange Catalyst,” Can. J. Chem. Eng., Vol. 74, pp. 493-500 (1996).

    Xu, X., Y. Zheng, and G. Zheng, “Kinetics and Effectiveness of Catalyst for Synthesis of Methyl tert-Butyl Ether in Catalytic Distillation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2232-2236 (1995).

    Yadav, G. D. and M. B. Thathagar, “Esterification of Maleic Acid with Ethanol over Cation-Exchange Resin Catalysts,” Reactive & Functional Polymers, Vol. 52, pp. 99-110 (2002).

    Yalcinyuva, T., H. Deligoz, I. Boz, and M. A. Gurkaynak, “Kinetics and Mechanism of Myristic Acid and Isopropyl Alcohol Esterification Reaction with Homogeneous and Heterogeneous Catalysts,” International Journal of Chemical Kinetics, Vol. 40, pp. 136-144 (2008).

    Yang, Z., M. Li, and J. Yang, “Kinetics of Esterification of Lactic Acid with Ethanol Catalyzed by Cation-Exchange Resins,” Reactive & Functional Polymers, Vol. 61, pp. 101-114 (2004).

    邱如吟,「產製丙酸丁酯之非均相酯化反應研究」,碩士論文,台灣科技大學化工研究所(2000)。

    周珮琳,「苯甲酸乙酯之合成與水解反應動力研究」,碩士論文,台灣科技大學化工研究所(2003)。

    蔡雨廷,「戊二酸與甲醇的非均相酯化反應動力行為研究」,碩士論文,台灣科技大學化工研究所(2005)。

    蔡於展,「乙酸乙酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2008)。

    李佩容,「戊酸甲酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2009)。

    謝政廷,「含醇類水溶液系統的汽液液相平衡研究」,博士論文,台灣科技大學化工所(2009)。

    梁韶芙,「丙二醇甲醚酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2010)。

    張善堯,「非均相觸媒之阿魏酸甲酯合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2012)。

    QR CODE