簡易檢索 / 詳目顯示

研究生: 呂邦華
Bang-Hua Lu
論文名稱: 建構快速熱處理之二氯矽烷低壓化學氣相沉積系統進行矽磊晶之實驗
Low-Pressure Chemical Vapor Deposition of Si from Chlorosilane by Single Wafer Rapid Thermal Processing
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 洪儒生
Lu-Sheng Hong
周賢鎧
Shyan-Kay Jou
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 快速熱處理低壓化學氣相沉積二氯矽烷矽薄膜磊晶
外文關鍵詞: Rapid thermal process, Reduced-pressure chemical vapor deposition, Dichlorosilane, Epitaxy
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以建構一個具有快速熱處理基材的低壓化學氣相沉積系統,並藉以研究以二氯矽烷為原料來沉積矽磊晶膜的變數效應。本研究以掌握裝置初期試車發生的問題並尋找可能的解決方案為研究目的。實驗過程分別針對紅外線加熱燈位置、反應總壓、反應氣體進氣口位置以及是否使用到預載型腔體作晶片的傳輸,探討這些變數對於二氯矽烷在Si(100)基材上長膜的影響。實驗結果顯示,在總壓為10 torr時,反應氣體進氣口僅以4孔的出氣組態會導致在二吋晶片上有長膜厚度不勻的現象。而在未使用預載型腔體傳輸基材的情況下,長膜呈現多晶而非單晶矽的晶型。可能的原因為長膜腔體內殘留的二氯矽烷、水氣及氧氣造成加溫過程石墨載台的氧化腐蝕以致於有碳汙染而導致矽長膜多晶化甚至有碳化矽鍵結形成的問題。


This thesis aims to construct a low-pressure chemical vapor deposition (LPCVD) system with rapid thermal process and investigate the variable effects of using dichlorosilane (DCS) as the precursor for silicon epitaxial films deposition. We aimed to identify and address the issues that occurred during the initial system construction and to seek possible solutions. First, experimental process issues such as infrared heating lamp focus positions, total reaction pressure, shower head configuration, and the presence or absence of a load-lock chamber for substrate transfer were investigated. Their influence on Si film deposition using DCS on Si(100) substrates was evaluated. The experimental results indicated that using a four-hole shower head at a total pressure of 10 torr resulted in, non-uniform film thickness on a 2-inch wafer. Furthermore, when no load-lock chamber was applied for substrate transfer, the film exhibited a polycrystalline structure rather than monocrystalline silicon. This is most likely due to residual DCS, adsorbed-water, and oxygen left in the deposition chamber, causing oxidation or corrosion of the graphite susceptor during the heating process, and therefore resulting in carbon contamination on the silicon films, polycrystallization of film quality or even unintentional SiC bond formation.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機和目的 2 第二章 文獻回顧 3 2.1 二氯矽烷(Dichlorosilane, DCS) 3 2.1.1 二氯矽烷介紹及應用 3 2.1.2 二氯矽烷的製備及市場 6 2.2 快速熱處理(Rapid Thermal Processing, RTP)技術 8 2.3 化學氣相沉積法(Chemical vapor deposition, CVD) 9 2.3.1 低壓化學氣相沉積法(LPCVD) 9 2.4 二氯矽烷之長膜相關反應動力 11 2.4.1 二氯矽烷之氣相與表面反應 11 2.4.2 二氯矽烷之表面吸附反應 12 2.5 二氯矽烷之選擇性矽磊晶成長 14 第三章 實驗方法與步驟 16 3.1 實驗裝置 16 3.1.1 實驗材料及氣體 16 3.1.2 實驗設備 18 3.2 實驗流程 22 3.2.1 實驗架構 22 3.2.2 矽晶片清洗 23 3.2.3 矽磊晶製程 25 3.2.4 熱氧化製程 27 3.3 分析儀器 28 3.3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28 3.3.2 橢圓偏光儀(Spectroscopic Ellipsometry, SE) 29 3.3.3 四點探針薄膜電阻量測儀(Four Point Sheet Resistivity Meter) 30 3.3.4 Van der Pauw量測法 31 3.3.5 反射式高能電子繞射(Reflection High-Energy Electron Diffraction, RHEED) 32 3.3.6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 33 3.3.7 原子力顯微鏡(Atomic Force Microscope, AFM) 34 第四章 結果與討論 35 4.1 實驗裝置設計對矽晶膜沉積影響的探討 35 4.1.1 紅外線加熱燈照射之範圍及位置調整 35 4.1.2 進氣孔之分布對磊晶厚度的影響 37 4.1.3 預載型腔體的有無對矽磊晶之影響 41 4.2 熱氧化製程之探討 51 4.2.1 熱氧化矽薄膜製備 51 第五章 結論 52 第六章 參考文獻 53

(1) Hoyt, J.; King, C.; Noble, D.; Gronet, C.; Gibbons, J.; Scott, M.; Laderman, S.; Rosner, S.; Nauka, K.; Turner, J. Limited reaction processing: growth of Si1− xGex/Si for heterojunction bipolar transistor applications. Thin Solid Films 1990, 184 (1-2), 93-106.
(2) Moldoveanu, S. C. Analytical pyrolysis of natural organic polymers; Elsevier, 1998.
(3) Mizushima, I. Selective Epitaxy of Si and SiGe for Future MOS Devices. ECS Transactions 2009, 22 (1), 81.
(4) Singh, K. Gate-All-Around (GAA) FET – Going Beyond The 3 Nanometer Mark. 2021. (accessed.
(5) Barraud, S.; Lapras, V.; Previtali, B.; Samson, M.; Lacord, J.; Martinie, S.; Jaud, M.-A.; Athanasiou, S.; Triozon, F.; Rozeau, O. Performance and design considerations for gate-all-around stacked-NanoWires FETs. In 2017 IEEE international electron devices meeting (IEDM), 2017; IEEE: pp 29.22. 21-29.22. 24.
(6) Auth, C.; Allen, C.; Blattner, A.; Bergstrom, D.; Brazier, M.; Bost, M.; Buehler, M.; Chikarmane, V.; Ghani, T.; Glassman, T. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In 2012 symposium on VLSI technology (VLSIT), 2012; IEEE: pp 131-132.
(7) Dash, T.; Dey, S.; Das, S.; Jena, J.; Mohapatra, E.; Maiti, C. Performance comparison of strained-SiGe and bulk-Si channel FinFETs at 7 nm technology node. Journal of Micromechanics and Microengineering 2019, 29 (10), 104001.
(8) Lespiaux, J.; Deprat, F.; Vives, J.; Duru, R.; Bicer, M.; Gauthier, A.; Brezza, E.; Juhel, M.; Chenevas-Paule, F.; Baron, A. Reduced Pressure–Chemical Vapor Deposition of Monocrystalline and Polycrystalline Si (: B) and SiGe (: B) Layers on Blanket Wafers. ECS Transactions 2022, 109 (4), 217.
(9) Hartmann, J.; Bertin, F.; Rolland, G.; Laugier, F.; Séméria, M. Selective epitaxial growth of Si and SiGe for metal oxide semiconductor transistors. Journal of crystal growth 2003, 259 (4), 419-427.
(10) Zan, Y.; Li, Y.-L.; Cheng, X.-H.; Zhao, Z.-Q.; Liu, H.-Y.; Hu, Z.-H.; Du, A.-Y.; Wang, W.-W. High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing. Chinese Physics B 2020, 29 (8), 087303.
(11) Agarwal, R. K.; Lehmann, J. F.; Coe, C. G.; Tempel, D. J. Method for making a chlorosilane. Google Patents: 2012.
(12) Vorotyntsev, V.; Mochalov, G.; Kolotilova, M. Kinetics of dichlorosilane separation from a mixture of chlorosilanes by distillation using a regular packing. Theoretical Foundations of Chemical Engineering 2004, 38 (4), 355-359.
(13) Global Electronic Grade Dichlorosilane DCS (SiH2Cl2) Market Research Report 2022; QYResearch Group, 2022.
(14) Fair, R. B. Rapid thermal processing: science and technology; Academic Press, 2012.
(15) Ebert, J.; De Roover, D.; Porter, L.; Lisiewicz, V.; Ghosal, S.; Kosut, R.; Emami-Naeini, A. Model-based control of rapid thermal processing for semiconductor wafers. In Proceedings of the 2004 American Control Conference, 2004; IEEE: Vol. 5, pp 3910-3921.
(16) Hartmann, J.-M.; Mazzocchi, V.; Pierre, F.; Barnes, J.-P. A benchmark of 300mm RP-CVD chambers for the low temperature epitaxy of Si and SiGe. ECS Transactions 2018, 86 (7), 219.
(17) Swihart, M. T.; Carr, R. W. On the mechanism of homogeneous decomposition of the chlorinated silanes. Chain reactions propagated by divalent silicon species. The Journal of Physical Chemistry A 1998, 102 (9), 1542-1549.
(18) Kongetira, P.; Neudeck, G. W.; Takoudis, C. G. Expression for the growth rate of selective epitaxial growth of silicon using dichlorosilane, hydrogen chloride, and hydrogen in a low pressure chemical vapor deposition pancake reactor. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1997, 15 (6), 1902-1907.
(19) Walch, S. P.; Dateo, C. E. Thermal decomposition pathways and rates for silane, chlorosilane, dichlorosilane, and trichlorosilane. The Journal of Physical Chemistry A 2001, 105 (10), 2015-2022.
(20) Sakamoto, H.; Takakuwa, Y.; Hori, T.; Horie, T.; Suemitsu, M.; Miyamoto, N. Kinetics of dissociative adsorption of dichlorosilane on Si (100) 2× 1. Applied surface science 1996, 107, 68-74.
(21) Mayangsari, T. R.; Yusup, L. L.; Park, J.-M.; Blanquet, E.; Pons, M.; Jung, J.; Lee, W.-J. Study of surface reaction during selective epitaxy growth of silicon by thermodynamic analysis and density functional theory calculation. Journal of Crystal Growth 2017, 468, 278-282.
(22) Chai, W.; Kaliappan, M.; Haverty, M.; Thompson, D.; Henkelman, G. Calculations of selective Si epitaxial growth. Applied Surface Science 2020, 514, 145888.
(23) Pharkphoumy, S.; Khurelbaatar, Z.; Janardhanam, V.; Choi, C.-J.; Shim, K.-H.; Choi, S.-S.; Cho, D.-H. High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes. Transactions on Electrical and Electronic Materials 2016, 17 (4), 196-200.
(24) Hartmann, J.; Papon, A.; Barnes, J.; Billon, T. Growth kinetics of SiGe/Si superlattices on bulk and silicon-on-insulator substrates for multi-channel devices. Journal of crystal growth 2009, 311 (11), 3152-3157.
(25) Zaidi, I.; Jang, Y.-H.; Ko, D. G.; Im, I. T. Numerical modeling study on the epitaxial growth of silicon from dichlorosilane. Journal of Crystal Growth 2018, 483, 1-8.
(26) Chin, A.; Lin, B.; Chen, W. High quality epitaxial Si grown by a simple low pressure chemical vapor deposition at 550° C. Applied physics letters 1996, 69 (11), 1617-1619.
(27) Finch, R.; Queisser, H.; Thomas, G.; Washburn, J. Structure and origin of stacking faults in epitaxial silicon. Journal of Applied Physics 1963, 34 (2), 406-415.
(28) Jung, J.; Son, B.; Kam, B.; Joh, Y. S.; Jeong, W.; Cho, S.; Lee, W.-J.; Park, S. Process steps for high quality Si-based epitaxial growth at low temperature via RPCVD. Materials 2021, 14 (13), 3733.
(29) Morosanu, C.; Iosif, D.; Segal, E. Vapour growth mechanism of silicon layers by dichlorosilane decomposition. Journal of Crystal Growth 1983, 61 (1), 102-110.
(30) Robinson, P.; Goldsmith, N. Silicon epitaxial growth using dichlorosilane. Journal of Electronic Materials 1975, 4, 313-328.
(31) Donahue, T.; Reif, R. Silicon epitaxy at 650–800° C using low‐pressure chemical vapor deposition both with and without plasma enhancement. Journal of applied physics 1985, 57 (8), 2757-2765.
(32) Krzeminski, C.; Larrieu, G.; Penaud, J.; Lampin, E.; Dubois, E. Silicon dry oxidation kinetics at low temperature in the nanometric range: Modeling and experiment. Journal of applied physics 2007, 101 (6).

QR CODE