簡易檢索 / 詳目顯示

研究生: 方昱斌
Yu-pin Fang
論文名稱: 低溫濺鍍磊晶法之pn接面形成與其光伏應用研究
Formation of pn Junction by Sputtering Epitaxy Method and its Application to Photovoltaic Devices
指導教授: 葉文昌
Wen-chang Yeh
口試委員: 徐世祥
Shih-hsiang Hsu
趙良君
Liang-chiun Chao
張勝良
Sheng-lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 57
中文關鍵詞: 濺鍍磊晶載子生命期太陽能電池轉換效率
外文關鍵詞: Sputter Epitaxy, Lifetime, Solar Cell, Efficiency
相關次數: 點閱:218下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功使用低溫濺鍍磊晶法成長矽薄膜並且應用於太陽電池元件製作,磊晶矽薄膜的部份在製程溫度為220℃與直流電源功率為100 W的條件下可得到最佳的矽膜品質,其有效復合速率(Recombination Velocity, S)為287 cm/sec、載子生命期(Lifetime, τ)為59.1 μs。利用上述所得到的最佳製成條件形成n+-p接面製作太陽電池元件,在矽膜厚度為650 nm時可得到元件的轉換效率(Efficiency, η)為 8.53%、填充因子(Fill Factor, F.F.)為0.64、開路電壓(Open-Circuit Voltage, Voc)為0.51 V、電流密度(Current Density, Jsc)為18.3 mA/cm2。


    Continuous Si homoepitaxy were realized by using DC magnetron sputtering and its application for solar cell devices in this article. The good quality of epitaxial Si films can be obtained at the conditions of substrate temperature was 220℃, discharge power was 100 W and thickness was 350 nm. The characteristic of epi-layer are lifetime of 59.1 μs and recombination velocity of 287 cm/sec. The n+-p junction solar cells were fabricated with the optimum processed parameter. At the thickness of 650 nm, the conversion efficiency is 8.53%, fill factor is 0.64, open-circuit voltage is 0.51 V, and current density is 18.3 mA/cm2.

    中文摘要 ------------------------------------------------- Ⅰ 英文摘要 ------------------------------------------------- Ⅱ 誌 謝 ------------------------------------------------- Ⅲ 圖表索引 ------------------------------------------------- Ⅶ 第一章 序論 ----------------------------------------------- 1 1.1 前言 ------------------------------------------ 1 1.2 太陽電池分類 ---------------------------------- 2 1.3 太陽電池原理介紹 ------------------------------ 5 1.3.1 太陽光譜 ----------------------------------- 5 1.3.2 太陽電池原理 ------------------------------- 5 1.3.3 太陽電池重要參數 --------------------------- 8 1.4 磊晶技術介紹 ---------------------------------- 10 1.5 研究目標 -------------------------------------- 13 1.6 論文流程 -------------------------------------- 14 第二章 低溫濺鍍磊晶矽膜物性及電性分析 -------------------- 15 2.1 引言 ----------------------------------------- 15 2.2 研究方法 ------------------------------------- 16 2.2.1 矽薄膜濺鍍磊晶成長 ------------------------ 16 2.2.2 矽薄膜物性分析方式 ------------------------ 18 2.2.3 矽薄膜電性分析方式 ------------------------ 19 2.3 實驗結果與討論 ------------------------------- 22 2.3.1 載台溫度對矽膜品質之影響 ------------------ 22 2.3.2 直流電源功率對矽膜品質之影響 -------------- 24 2.3.3 矽膜厚度與摻雜濃度對矽膜品質之影響 -------- 26 2.4 本章結論 ------------------------------------- 28 第三章 磊晶矽膜之pn接面形成與太陽電池應用 ------------ 29 3.1 引言 ----------------------------------------- 29 3.2 磷玻璃溶膠-凝膠法製作磷擴散源 ---------------- 30 3.2.1 溶膠-凝膠法 ------------------------------- 30 3.2.2 磷玻璃溶液製備 ---------------------------- 30 3.2.3 擴散太陽電池製作 -------------------------- 32 3.2.4 擴散太陽電池特性分析 ---------------------- 34 3.2.4.1 四點探針量測結果與分析 --------------- 34 3.2.4.2 電流-電壓量測結果與分析 -------------- 35 3.3 濺鍍磊晶矽膜成長n+射極端 --------------------- 37 3.3.1 磊晶矽太陽電池製作 ------------------------ 37 3.3.2 磊晶矽太陽電池特性分析 -------------------- 38 3.3.2.1 直流電源功率對太陽電池特性之影響 ----- 38 3.3.2.2 矽膜厚度對太陽電池特性之影響 --------- 42 3.3.2.3 矽膜濃度對太陽電池特性之影響 --------- 47 3.4 本章結論 ------------------------------------- 51 第四章 結論 ------------------------------------------- 52 參考文獻 ------------------------------------------------- 54

    [1] Hoagland W., “Solar energy,” Sci. Amer., Vol. 273, pp. 170-173 (1995).
    [2] 劉佳怡,太陽光電產業製成與技術發展趨勢,工研院產業特輯,第62-72頁,8月(2007)。
    [3] 沈輝、曾祖勤,太陽能光電技術,五南圖書,第一版(2008)。
    [4] 黃惠良等著,太陽電池,五南圖書出版股份有限公司,台中,第168-169頁(2008)。
    [5] Qi W. J., Li B. Z., Jiang G. B., Gu Z. G., Kwok T. K., Zhang R. J., and Chu P. K., “Investigation on solid phase epitaxy of deposited SiGe film on a Si substrate,” Thin Solid Films., Vol. 293, pp. 310-314 (1997).
    [6] Michelle J. M., Klaus J. W., Mladen P., and Andrew W. B., “Boron doping of silicon layers grown by liquid phase epitaxy,” Journal of Crystal Growth., Vol. 241, pp. 45-50 (2002).
    [7] Kitagawa T., Kondo M., and Matsuda A., “Hydrogen-mediated low-temperature epitaxy of Si in plasma-enhanced chemical vapor deposition,” Applied Surface Science, Vol. 159-160, pp. 30-34 (2000).
    [8] Nikiforov A. I., Kanter B. Z., and Pchelyakov O. P., “RHEED investigation of limiting thickness epitaxy during low-temperature Si-MBE on (100) surface,” Thin Solid Films, Vol. 336, pp. 179-182 (1998).
    [9] Huang H. E., and Yeh W. C., “Continuous Si Epitaxy by Direct Current Magnetron Sputtering,” Electrochem and Solid State Letters, Vol. 12, pp. H67-H69 (2009).
    [10] Taguchi M., Terakawa A., Maruyama E., and Tana M., “Obtaining a Higher Voc in HIT Cells,” Prog. Photovolt: Res. Appl., Vol. 13, pp. 481-488 (2005).
    [11] Keith R. M., Michael J. C., David D. S., William P. M., and Richard M. S., “The choich of silicon wafer for the production of low-cost rear-contact solar cells,” 3rd. WCPEC, Osaka, Japan, pp. 971-974 (2003).
    [12] Takami T., “Practice of The Analysis of Reflection High-Energy Electron Diffraction Pattern,” Surface Science, Vol. 25, No. 6, pp.363-369 (2004).
    [13] Meier D. L., Page M. R., Iwaniczko E., Xu Y., Wang Q., and Branz H. M., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon,” 17th NREL Crystalline Silicon Workshop, August (2007).
    [14] Cuevas A., Stocks M., Macdonald D., and Sinton R., “Applications of the quasi-steady-state photoconductance technique,” 2nd World PVSEC, Vienna (1998).
    [15] Kane D. E., and Swanson R. M., “Measurement of the Emitter Saturation Current by a Contactless Photoconductivity Decay Method,” Proceedings of the 18th IEEE Photovoltaic Specialists Conference, pp. 578-583 (1985).
    [16] Stephens A.W., Green M. A., “Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements,” Solar Energy Materials and Solar Cells, Vol. 45, pp. 255-265 (1997).
    [17] Horanyi T. S., Pavelka T., and Tutto P., “In situ bulk lifetime measurement on silicon with a chemically passivated surface,” Applied Surface Science, Vol. 63, pp. 306-311 (1993).
    [18] Bergmann R. B., Zaczek C., Jensen N., Oelting S., and Werner J. H., “Low-temperature Si epitaxy with high deposition rate using ion-assisted deposition,” Applied. Physics. Letters., Vol. 72, NO. 23, pp. 2996-2998 (1998).
    [19] 莊佑豪,水溶液法製備氧化鋅薄膜及其光學特性研究,大同大學材料工程研究所碩士論文,中華民國98年7月。
    [20] 林哲民,單晶矽太陽電池製作,國立台灣科技大學光電所碩士論文,中華民國98年7月。

    QR CODE