簡易檢索 / 詳目顯示

研究生: 紀政佑
Cheng-Yu Chi
論文名稱: 具可調式雙極矩之自組裝單分子膜改質氧化鋅應用於有機層疊式太陽能電池中間層之研究
Study of Self-assembled Monolayers Modified Zinc Oxide Inter-Connecting Layer with Tunable Surfaces Dipole Moment for Organic Tandem Solar Cell
指導教授: 戴龑
Yian Tai
口試委員: 陶雨臺
Yu-Tai Tao
吳春桂
Chun-Guey Wu
陳錦地
Chin-Ti Chen
朱治偉
Chih-Wei Chu
陳家浩
Chia-Hao Chen
李志堅
Chih-Chien Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 162
中文關鍵詞: 有機層疊式太陽能電池自組裝單分子膜氧化鋅偶極矩
外文關鍵詞: Organic Tandem solar cells, Self-assembled monolayer, ZnO, dipole moment
相關次數: 點閱:300下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來有機太陽能電池由聚噻吩(P3HT)共軛高分子及富勒希衍伸物(PCBM)混合而成之光吸收主動層(Active layer)發展至以窄能隙之共軛高分子為主動層之有機太陽能電池,藉以提升電池元件效率。為了有效吸收廣泛之太陽光放射波段,以堆疊不同吸收波段之主動層並以串聯方式製備之有機層疊式太陽能電池,藉此增加開路電壓,進而提升整體元件效率。目前文獻皆以PEDOT:PSS導電高分子之電洞傳導層及氧化鋅(ZnO)之電子傳導層為中間連結層(Inter-connecting layer)來連結各子電池(Sub-cell)元件,然而在高濕度的環境下,PEDOT:PSS導電高分子具水溶性質,使其容易吸收水氣並造成元件毀損之可能。
    本論文之研究在導入自組裝單分子膜(Self-assembled monolayers)之技術應用於修飾氧化鋅中間連結層表面極性(Polarity)藉以取代PEDOT:PSS之電洞傳導性質,並配合水轉印法(Water transferable method)以不同偶極矩性之單分子材料調控氧化鋅兩側表面之偶極矩(Dipole moment),藉由相對應之偶極牽引各子電池中之載子傳遞於氧化鋅中間連結層,並於中間連結層產生再結合(Recombination)。此雙面修飾層可降低層疊式太陽能電池中各子電池中之漏電流由此提升填充因子(Fill factor),另一方面,主動層與中間連結層之介面藉由偶極分子薄膜修飾形成歐姆接觸(Ohmic contact),使子電池之個別開路電壓累加於層疊式太陽能電池中,進而提升太陽能電池整體元件效率,並且使用此雙面修飾表面極性之氧化鋅中間層於高濕度環境下仍具有較佳之穩定性。


    Recently, the organic photovoltaic (OPV) was the promising electronics device in the renewable energy developing. The bulk hetero-junction system blending with P3HT and PCBM was the favorable materials for research. For the OPV device performance enhancement, the tandem structure has been design. The tandem structure could collect the widely solar irradiation and increase the open circuit voltage (VOC).
    In this work, we use ZnO NPs with opposite polarity in organic tandem solar cell (OTSC). The surface polarity and direction of self-assembled monolayer (SAM) grown on both sides of ZnO NPs using the transferable technique. Ideally, the inter-connecting layer (ICL) of tandem solar cell construct with hole and electron transporting layer, those of them separating the individual sub-cell for multiple junction solar cell. Furthermore, the properties of ICL have been recombined the electron and hole from the specific sub-cell and guarded the recombination in the active layer. Herein, the ICL-ZnO NPs exhibit the equilibrium charge transfer by controlling the surface dipole moment, and furthermore the tunable energy band alignment can prevent charges recombine in the active layer. In addition, the thin layer can have the higher transmittance, which enhance the optical absorption. As the result, the ICL of ambipolar ZnO NPs can superposition the Voc for multiple tandem solar cell and charges equilibrium, therefore, the current leakage decreased then the circuit current density and fill factor were improved, finally, the overall power conversion efficiency was increased.

    摘要 Abstract Acknowledgement Table of Contents Figure Index Table Index Chapter 1 Introduction 1.1 Preface 1.2 Type of photovoltaic 1.2.1 Inorganic solar cells 1.2.2 Organic solar cells 1.2.3 Advantage of organic photovoltaic 1.3 Development of organic photovoltaic 1.3.1 Single-layer of conjugated polymers 1.3.2 Bilayer hetero-junction of conjugated polymers 1.3.3 Bulk hetero-junction (BHJ) of conjugated polymers 1.3.3.1 BHJ OPV device of conventional structure 1.3.3.2 BHJ OPV device of inverted structure 1.4 Organic Tandem solar cells (OTSC) 1.5 Inter-connecting layer (ICL) of OTSC 1.6 Self-assembled monolayers (SAMs) 1.7 Motivation and Research Objectives Chapter 2 Theory 2.1 Fundamental principle of OPV 2.1.1 Working principle of OPV 2.2 Basic parameters of OPV 2.3 Equivalent circuit diagram 2.4 Fundamental principle of OTSC 2.4.1 Working principle of OTSC 2.4.2 Basis parameters of OTSC 2.5 Solar spectrum irradiance 2.6 Zinc oxide (ZnO) 2.6.1 Crystal structure of Zinc oxide 2.6.2 Mechanical properties 2.6.3 Optical and Electrical properties 2.6.4 Formation of ZoO 2.7 Self-assembled monolayers (SAMs) 2.7.1 Composition of SAMs 2.7.2 Preparation of self-assembled monolayers 2.7.3 Application of SAMs Chapter 3 Experimental Section 3.1 Materials 3.1.1 Materials of active layer 3.1.2 Materials of SAMs 3.1.3 Solvent 3.2 Experimental apparatus 3.2.1 Organic photovoltaic gloves box system 3.2.2 Thermal Evaporation system 3.2.3 Spray pyrolysis system 3.3 Characterization instrumentation 3.3.1 Ultraviolet-visible spectroscopy (UV-Vis) 3.3.2 Photoluminescence (PL) 3.3.3 Contact angle Meter(CA) 3.3.4 Solar simulator measurement system 3.3.5 Incident photon-to-electron conversion efficiency (IPCE) 3.3.6 Field Emission Scanning Electron Microscopy (FESEM) 3.3.7 Ultraviolet spectroscopy (UPS) 3.3.8 High Resolution X-ray photoelectron spectroscopy (HRXPS) 3.3.9 Atomic Force Microscopy (AFM) 3.4 Experimental procedure 3.4.1 Cleaned of ITO and pure glass substrate 3.4.2 Preparation of Zinc oxide 3.4.3 Transferable procedure 3.4.4 Device fabrication 3.4.4.1 OPV device fabrication of inverted structure 3.4.4.2 OPV device fabrication of Tandem structure 3.4.5 Experimental details flow chart Chapter 4 Result and Discussion 4.1 Poly(styrenesulfonate) as sacrificial layer for transferring ZnO 4.2 Spray transfer ZnO (ST-ZnO) for hole transporting layer 4.3 ZnO NPs as inter-connecting layer (ICL-ZnO NPs) with SAMs modification 4.4 ZnO NPs ICL utilized in organic tandem solar cell (OTSC) 4.5 Discussion Chapter 5 Conclusion and Future research Reference

    1. Seeking Alpha, https://seekingalpha.com/article/4083393-world-energy-2017minus-2050-annual-report.
    2. Günes, S. N., H.; Sariciftci, N. S., Chemical Reviews 2007, 107, 1324.
    3. Maturová, K. v. B., S. S.; Wienk, M. M.; Janssen, R. A. J.; Kemerink, M., Nano Letters 2009, 9, 3032.
    4. Tang, C. W., Applied Physics Letters 1986, 48, 183.
    5. Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J., Nature 2014, 516, 31.
    6. Risk of Rising Sea Level to Population and Land Area. EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION 88, 105.
    7. Catastrophic Rise in Sea Level, http://risingsealevel-swl.blogspot.tw/.
    8. Makowski, M. W., Review of Scientific Instruments 1949, 20, 876.
    9. NREL, http://www.nrel.gov/ncpv/.
    10. Miles, R. W. Z., G.; Forbes, I., Materials Today 2007, 10, 20.
    11. Van Wieringen, A.; Warmoltz, N., Physica 1956, 22, 849.
    12. Yella, A. L., H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M., Science 2011, 334, 629.
    13. Schmidt-Mende, L. B., U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Grätzel, M., Advanced Materials 2005, 17, 813.
    14. Sullivan, P. J., T. S.; Ferguson, A. J.; Heutz, S., Applied Physics Letters 2007, 91.
    15. Zhao, D. T., W.; Ke, L.; Tan, S. T.; Sun, X. W., ACS Applied Materials & Interfaces 2010, 2, 829.
    16. Stenzel, O. S., A.; Voigtsberger, K.; von Borczyskowski, C., Solar Energy Materials and Solar Cells 1995, 37, 337.
    17. Coakley, K. M. L. Y. G., C.; McGehee, M. D, Synthesis and Applications of Copolymers 2005, 30, 37.
    18. Janssen, R. A. J. H., J. C.; Saricifti, N. S., MRS Bulletin 2005, 30, 33.
    19. Dennler, G. S., M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J., Advanced Materials 2008, 20, 579.
    20. Sariciftci, N. S. S., L.; Heeger, A. J.; Wudl, F., Science 1992, 258, 1474.
    21. Li, G. S., V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Nature Materials 2005, 4, 864.
    22. Hou, J. C., H. Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G., Journal of the American Chemical Society 2009, 131, 15586.
    23. Mei, J. O., K.; Kim, Y. G.; Heston, N. C.; Arenas, D. J.; Nasrollahi, Z.; McCarley, T. D.; Tanner, D. B.; Reynolds, J. R.; Schanze, K. S., ACS Applied Materials & Interfaces 2009, 1, 150.
    24. Kim, J. Y. K., S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., Advanced Materials 2006, 18, 572.
    25. Park, S. H. R., A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Nature Photonics 2009, 3, 297.
    26. Chen, H. Y. H., J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. , Nature Photonics 2009, 3, 649.
    27. Peet, J. S., M. L.; Heeger, A. J.; Bazan, G. C., Advanced Materials 2009, 21, 1521.
    28. Nielsen, T. D. C., C.; Foged, S.; Thorsen, J.; Krebs, F. C., Solar Energy Materials and Solar Cells 2010, 94, 1553.
    29. Helgesen, M. S., R.; Krebs, F. C., Journal of Materials Chemistry 2010, 20, 36.
    30. Xiang, X. B. D., W. H.; Chang, X. L.; Yuan, H. R., Solar Energy Materials and Solar Cells 2001, 68, 97.
    31. Krebs, F. C. F., J.; Jorgensen, M., Journal of Materials Chemistry 2010, 20, 8994.
    32. Reese, M. O. G., S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M.; R. Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C., Solar Energy Materials and Solar Cells 2011, 95, 1253.
    33. Brabec, C. J. S., N. S.; Hummelen, J. C., Advanced Functional Materials 2001, 11, 15.
    34. Wang, J. C. W., W. T.; Tsai, M. Y.; Lee, M. K.; Horng, S. F.; Perng, T. P.; Kei, C. C.; Yu, C. C.; Meng, H. F., Journal of Materials Chemistry 2010, 20, 862.
    35. Dipl.Ing. Klaus Petritsch, O. S. C. A., PhD Thesis 2002.
    36. Krebs, F. C.; øndergaard, R.; Jørgensen, M., Solar Energy Materials and Solar Cells 2011, 95, 1348.
    37. Krebs, F. C., Solar Energy Materials and Solar Cells 2009, 93, 1636.
    38. Espinosa, N.; García-Valverde, R.; Urbina, A.; Krebs, F. C., Solar Energy Materials and Solar Cells 2011, 95, 1293.
    39. Gaudiana, R. B., C., Nature Photonics 2008, 2, 287.
    40. http://en.wikipedia.org/wiki/Organic_solar_cell#cite_note-Nelson-4.
    41. Marks, R. N. H., J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. , Journal of Physics: Condensed Matter 1994, 6, 1379.
    42. McGehee, M. D. T., M. A., Nature Materials 2006, 5, 675.
    43. Peumans, P.; Yakimov, A.; Forrest, S. R., Journal of Applied Physics 2003, 93, 3693
    44. Meng, L. X.; Zhang, Y. M.; Wan, X. j.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. S., Science 2018, 1.
    45. Nelson, J., Current Opinion in Solid State and Materials Science 2002, 6, 87.
    46. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Science 1995, 270, 1789.
    47. Yuhang Liu; Jingbo Zhao; Zhengke Li; Cheng Mu; Wei Ma; Huawei Hu; Kui Jiang; Haoran Lin; Ade, H.; Yan, H., Nature communication 2014, 5, 5293.
    48. Chen, W. H.; Wang, K. L.; Hung, W. Y.; Jiang, J. C.; Liaw, D. J.; Lee, K. R.; Lai, J. Y.; Chen, C. L., Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 4654.
    49. Eva Bundgaard; Frederik C. Krebs, Solar Energy Materials and Solar Cells 2007, 91, 954.
    50. A. Bisceglia; Juan; R. Orelli; Liliana, Current Organic Chemistry 2015, 19, 744.
    51. Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Advanced Materials 2000, 12, 1270.
    52. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Advanced Functional Materials 2003, 13, 85.
    53. Liang Y; Xu Z; Xia J; Tsai ST; Wu Y; Li G; Ray C; L., Y., Advanced Materials 2010, 22, E135.
    54. Huaxing Zhou; Liqiang Yang; Andrew C. Stuart; Samuel C. Price; Shubin Liu; You, W., Angewandte Chemie 2011, 50, 2995.
    55. Marsha A. Singha; Groves, M. N., Acta Crystallogr A 2009, 65, 190.
    56. Reyes-Reyes, M.; Kim, K.; Carroll, D. L., Applied Physics Letters 2005, 87, 083506.
    57. Chen, X.; Yang, J.; Haley, L. Y. X. C.; Lu, J. Z., F.; Loh, K. P., Organic Electronics 2010, 11, 1942.
    58. Hau, S. K.; Yip, H. L.; Ma, H.; Jen, A. K. Y., Applied Physics Letters 2008, 93, 233304.
    59. White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S., Applied Physics Letters 2006, 89, 143517.
    60. Chang, J. H.; Chen, Y. H.; Lin, H. W.; Lin, Y. T.; Meng, H. F.; Chen, E. C., Organic Electronics 2012, 13, 705.
    61. Ratcliff, E. L.; Garcia, A.; Paniagua, S. A.; Sarah R. Cowan ; Giordano, A. J.; Ginley, D. S.; Marder, S. R.; Berry, J. J.; Olson, D. C., Advanced Energy Materials 2013, 3, 647.
    62. Zhou, Y.; Li, F. B., S.; Tian, W.; Inganäs, O.; Zhang, F., Solar Energy Materials and Solar Cells 2009, 93, 497.
    63. Shrotriya, V.; Li, G.; Yao, Y.; Chu, C. W.; Yang, Y., Applied Physics Letters 2006, 88, 073508.
    64. Schumann, S.; Da Campo, R.; Illy, B.; Cruickshank, A. C.; McLachlan, M. A.; Ryan, M. P.; Riley, D. J.; McComb, D. W.; Jones, T. S., Journal of Materials Chemistry 2011, 21, 2381.
    65. Huiqiong Zho ; Yuan Zhang; Cheng-Kang Mai; Samuel D. Collins; Guillermo C. Bazan; Thuc-Quyen Nguyen; Heeger, A. J., Advance Materials 2015, 27, 1767.
    66. Hadipour A; de Boer B; Wildeman J; Kooistra F; Hummelen JC; Turbiez MGR; Wienk MM; Janssen RAJ; PWM., B., Advance Functional Materials 2006, 16, 1897.
    67. Chou, C. H.; Kwan, W. L.; Hong, Z.; Chen, L. M.; Yang, Y., Advanced Materials 2011, 23, 1282.
    68. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y., Nature communication 2013, 4, 2411.
    69. Jo, J.; Pouliot, J. R.; Wynands, D.; Collins, S. D.; Kim, J. Y.; Nguyen, T. L.; Woo, H. Y.; Sun, Y.; Leclerc, M.; Heeger, A. J., Advanced Materials 2013, 25, 4783.
    70. Zhang, S.; Ye, L.; Hou, J., Advanced Energy Materials 2016, 6, 1502529.
    71. Amer, T.; Dennle, G.; Lungenschmied, C.; Brabec, C. J., Energy & Environmental Science 2009, 2, 347.
    72. Choi, H.; Lee, J.; Lee, W.; Ko, S.-J.; Yang, R.; Lee, J. C.; Woo, H. Y.; dukYang, C.; Kim, J. Y., Organic Electronics 2013, 14, 3138.
    73. Peng, X.; Lin Hu, F. Q.; Zhou, Y.; Chu, P. K., Advance Materials Interfaces 2018, 5, 1701404.
    74. Martínez-Otero, A.; Liu, Q.; Mantilla-Perez, P.; Bajo, M. M.; Martorella, J., Journal of Materials Chemistry A 2015, 3, 10681.
    75. Abd. Rashid bin Mohd Yusoff; Dongcheon Kim; Hyeong Pil Kim; Kurt, F.; Shneider; Wilson Jose da Silva; Janga, a. J., Energy & Environmental Science, 2015, 8, 303.
    76. Chiu, J.-M.; Chu, C.-C.; Zena, D. M.; Tai, Y., Applied Energy 2015, 160, 681.
    77. Gooding, J. J.; Mearns, F.; Yang, W.; Liu, J., Electroanalysis 2003, 15, 81.
    78. Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P., Physical Review B 1996, 54, 14321.
    79. Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P., Apply physical Letter 1997, 71, 3528.
    80. Boer, B. D.; Hadipou, A.; Mandoc, M. M.; Woudenbergh, T. v.; Blom, P. W. M., Advanced Materials 2005, 17, 621.
    81. Crivillers, N.; Osella, S.; Dyck, C. V.; Lazzerini, G. M.; Cornil, D.; Liscio, A.; Stasio, F. D.; Mian, S.; Fenwick, O.; Reinders, F.; Neuburger, M.; Treossi, E.; Mayor, M.; Palermo, V.; Cacialli, F.; Cornil, J.; Samorì, P., Advanced Materials 2013, 25, 423.
    82. Lange, I.; Reiter, S.; Pätzel, M.; Zykov, A.; Nefedov, A.; Hildebrandt, J.; Hecht, S.; Kowarik, S.; Wöll, C.; Heimel, G.; Neher, D., Advanced Functional Materials 2014, 24, 7014.
    83. Margapoti, E.; Li, J.; Ceylan, Ö.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C.-A.; Barth, J. V.; Finley, J. J., Advanced Materials 2015, 27, 1426.
    84. Sharma, J.; Chang, H.-c.; Tai, Y., Langmuir Article 2010, 26, 8251.
    85. R.Thitima; Patcharee, C.; Takashi, S.; Susumu, Y., Solid-State Electronic 2009, 53, 176.
    86. Jouane, Y.; Colis, S.; Schmerber, G.; Kern, P.; Dinia, A.; Heisera, T.; Chapuis, Y.-A., Journal of Materials Chemistry 2011, 21, 1953.
    87. Chiu, J.-M.; Tai, Y., ACS Applied Materials & Interfaces 2013, 5, 6946.
    88. Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R., Chemical Materials 2011, 23, 4988.
    89. Hau, S. K.; Cheng, Y.-J.; Yip, H.-L.; Zhang, Y.; Ma, H.; Jen, A. K.-Y., ACS Applied Materials & Interfaces 2010, 2, 1892.
    90. Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A., Advanced Materials 2013, 25, 4766–4771.
    91. Hsieh, C.-H.; Cheng, Y.-J.; Li, P.-J.; Chen, C.-H.; Dubosc, M.; Liang, R.-M.; Hsu, C.-S., Journal of the American Chemical Society 2010, 132, 4887.
    92. M. Hiramoto; Suezaki, M.; Yokoyama, M., Chemistry Letters 1990, 327.
    93. Jinho Lee; Hongkyu Kang; Jaemin Kong; Lee, K., Advance Energyl Materials 2013, 4, 1301226.
    94. Sedra/Smith, M. c., fifth edtion, OXFORD.
    95. http://sales.hamamatsu.com/assets/html/ssd/si-photodiode/index.htm.
    96. Saunders, B. R.; Turner, M. L., Advances in Colloid and Interface Science 2008, 138, 1.
    97. Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R., Advanced Materials 2005, 17, 66.
    98. Peumans, P.; Yakimov, A.; Forrest, S. R., Journal of Applied Physics 2003, 93, 3693.
    99. Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J., Progress in Photovoltaics : Research and Applications 2007, 15, 659.
    100. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Advanced Materials 2006, 18 (6), 789.
    101. Huynh, W. U.; Dittmer, J. J.; Libby, W. C.; Whiting, G. L.; Alivisatos, A. P., Advanced Functional Materials 2003, 13, 73.
    102. Blom, P. W.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E., Advanced Materials 2007, 19, 1551.
    103. Grieschne, J.; Cornil, J.; Egelhaaf, H.-J., Advanced Materials 2007, 19, 173.
    104. Nhu Thuy Ho; Huynh Ngoc Tien; Se-Joeng Jang; Velusamy Senthilkumar; Yun Chang Park; Cho, S.; Kim, Y. S., Scientific reports 2016, 6, 30327.
    105. Hadipour, A.; Boer, B. d.; Blom, P. W. M., Organic Electronics 2008, 9, 617.
    106. Rostalski, J.; Meissner, D., Solar Energy Materials and Solar Cells 2000, 61, 87.
    107. Case, M. A.; Owusu, Y. A.; Chapman, H.; Dargan, T.; P.Ruscher, Renewable Energy 2008, 33, 2645.
    108. Yearian, H. J., Physical Review B 1935, 48, 631.
    109. van de Pol; M., F. C., American Ceramic Society bulletin 1990, 0, 1959.
    110. S.J.Peartona; D.P.Nortona; K.Ipa; Y.W.Heoa; T.Steiner, Progress in Materials Science 2005, 50, 293.
    111. Zhang, Y.; R. Nayak, T.; Hong, H.; Cai, W., Current Molecular Medicine 2005, 13, 1633.
    112. A.B.Djurišić; A.M.C.Ng; X.Y.Chen, Progress in Quantum Electronics 2010, 34, 191.
    113. Shokufeh Aghabeygi; Lida Hashemi; Morsali, A., Journal of Inorganic and Organometallic Polymers and Materials 2016, 26, 495.
    114. https://en.wikipedia.org/wiki/Zinc_oxide.
    115. V. A. Coleman; J. E. Bradby; Jagadish, C., Apply Physical Letter 2005, 86, 203105.
    116. Atsushi Tsukazaki; Akira Ohtomo; Takeyoshi Onuma; Makoto Ohtani; Takayuki Makino; Masatomo Sumiya; Keita Ohtani; Shigefusa F. Chichibu; Syunrou Fuke; Yusaburou Segawa; Hideo Ohno; Hideomi Koinuma; Kawasaki, M., Nature Materials 2004, 4, 42.
    117. F.Paraguay, D.; L., W. E.; N., D. R. A.; E.Andrade; M.Miki-Yoshida, Thin Solid Films 1999, 350, 192.
    118. NasrinTalebian; Seyedeh MatinAmininezhad; MonirDoudi, Journal of Photochemistry and Photobiology B: Biology 2013, 120, 66.
    119. Julien Amalric; P. Hubert Mutin; Gilles Guerrero; Arnaud Ponche; Sottoc, A.; Lavigne, J.-P., Journal of Materials Chemistry 2008, 19, 141.
    120. Tarek Abu-Husein; Swen Schuster; David A. Egger; Martin Kind; Tobias Santowski; Adrian Wiesner; Ryan Chiechi; Egbert Zoje ; Andreas Terfort ; Zharnikov, M., Advance Functional Materials 2015, 25, 3943.
    121. Shun-Chi Chang; Ito Chao; Tao, Y.-T., Journal of the American Chemical Society 1994, 116, 6792.
    122. Anuradha Bulusu; Sergio A. Paniagua; Bradley A. MacLeod; Ajaya K. Sigdel; Joseph J. Berry; Dana C. Olson; Seth R. Marder; Samuel Graham*, Langmuir 2013, 29, 3935.
    123. Lange, I.; Reiter, S.; Kniepert, J.; Piersimoni, F.; Pätzel, M.; Hildebrandt, J.; Thomas; Brenner; Hecht, S.; Neher, D., Appl. Phys. Lett. 2015, 106, 113302-1.
    124. http://www.mtl.kyoto-u.ac.jp/english/laboratory/nanoscopic/nanoscopic.htm#1.
    125. Hong Li; Paramonovx, P.; Bredas, J.-L., Journal of Materials Chemistry 2010, 20, 2630.
    126. Abdesselam Jedaa; Michael Salinas; Christof M. Ja¨ger; Timothy Clark; Alexander Ebel; Andreas Hirsch; Halik, M., Appl. Phys. Lett. 2012, 100, 063302.
    127. Tseng, C.-W.; Tao, Y.-T., Journal of the American Chemical Society 2009, 131, 12441.
    128. Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y., Advance Materials 2008, 20, 2376.
    129. Cremer, J., Novel head-to-tail coupled oligo(3-hexylthiophene) derivatives for photovoltaic applications. PhD Thesis 2005.
    130. Yeong Don Park; Jeong Ho Cho; Do Hwan Kim; Yunseok Jang; Hw Sung Lee; Kyuwook Ihm; Tai-Hee Kang; Cho, K., Electrochemical and Solid-State Letters 2006, 9, G317.
    131. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J., Journal of Physical Chemistry B 2005, 109, 9505.
    132. Oba, F.; Choi, M.; Togo, A.; Tanaka, I., Science and Technology of Advance Materials 2011, 12, 034302.
    133. Tan, S. T.; Sun, X. W.; Yu, Z. G.; Wu, P.; Lo, G. Q.; Kwong, D. L., Applied Physics Letters 2007, 91, 072101.
    134. Li, P.-J.; Liao, Z.-M.; Zhang, X.-Z.; Zhang, X.-J.; Zhu, H.-C.; Gao, J.-Y.; Laurent, K.; Leprince-Wang, Y.; Wang, N.; Yu, D.-P., Nano Letters 2009, 9, 2513.
    135. Cao, B. Q.; Lorenz, M.; Brandt, M.; Wenckstern, H. v.; Lenzner, J.; Biehne, G.; Grundmann, M., Physica Status solidi (RRL) 2008, 2, 37.
    136. Barnett, C. J.; Smith, N. A.; Jones, D. R.; Maffeis, T. G. G.; Cobley, R. J., Nanoscale Research Letters 2015, 10, 368.
    137. Heo, Y. W.; Norton, D. P.; Pearton, S. J., Applied Physics Letters 2005, 98, 073502.
    138. Janotti, A.; CG., C. G. V. d. W., Applied Physics Letters 2005, 87, 122102.
    139. Wang, C. G.; Irfan, I.; Liu, X. L.; Gao, Y. L., Journal of Vacuum Science & Technology B 2014, 32, 040801.
    140. Bernède, J. C.; Houari, S.; Nguyen, D.; Jouan, P. Y.; Khelil, A.; Mokrani, A.; Cattin, L.; Predeep, P., Physica Status solidi A 2012, 209, 1291.
    141. Bonifazi, D.; Engerc, O.; Diederich, F., Chemical Society Reviews 2007, 36, 390.
    142. Hewlett, R. M.; McLachlan, M. A., Advanced Materials 2016, 28, 3893.
    143. X.Q.Wei; B.Y.Man; M.Liu; C.S.Xue; H.Z.Zhuang; C.Yang, Physica B: Condensed Matter 2007, 388, 145.
    144. Janotti, A.; Walle, C. G. V. d., Reports on Progress in Physics 2009, 72, 126501.
    145. Kayaci, F.; Vempati, S.; Donmez, I.; Biyikli, N.; T. Uyar, Nanoscale 2014, 6, 10224.
    146. Lyons, J. L.; Janotti, A.; Walle, C. G. V. d., Journal of Applied Physics 2014, 115, 012014.

    QR CODE