簡易檢索 / 詳目顯示

研究生: 凃益儒
Yi-Zu Tu
論文名稱: 石墨烯/圖案藍寶石基板製備氮化銦鎵發光二極體之研究
Growth of InGaN for LED application and study on the graphene/ patternd sapphire substrate
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 周賢鎧
Shyankay Jou
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 石墨烯圖案化藍寶石基板發光二極體低壓化學氣相沉積拉曼光譜
外文關鍵詞: graphene, patterned sapphire substrate(PSS), LED, LPCVD, Raman spectroscopy
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前LED基板使用為藍寶石基板,而氮化鎵與藍寶石基板間存在著高晶格不匹配度,致使氮化鎵薄膜內部產生 109~1010 cm2 之貫穿型差排缺陷,嚴重影響到後續 LED 元件光電性能。圖案藍寶石基板之使用能有效降低差差排密度,然而圖案間之c面區域依舊存在高密度貫穿型差排。
    本研究嘗試在圖案化藍寶石基板與氮化鎵薄膜間插入石墨烯介面層,再降低氮化鎵薄膜於圖案化藍寶石基板c面差排密度。利用八吋低壓化學氣相沉積系統(LPCVD)在四吋圖案化藍寶石基板上石墨烯薄膜。分別在圖案化藍寶石基板上鍍上一層銅膜與鎳膜,透過調整金屬膜的厚度、反應氣體比例、製程溫度、不同加熱方式進行石墨烯薄膜的優化。在銅製程方面,由於銅的熔點較低,使製程過程中會產生大量的銅蒸氣,進而影響石墨烯的成長,造成石墨烯薄膜於圖案化藍寶石基板不均勻的現象,因此我們選擇熔點較高的金屬-鎳來當作金屬催化層。在鎳製程方面,經拉曼分析圖可以發現,增加在製程前退火的氫氣流量,可以大幅得提升石墨烯薄膜的品質,透過調整不同鎳薄膜的厚度,在鎳薄膜厚度為200 nm,退火氣體氬氣/氫氣比為100/100 sccm,製程反應氣體甲烷/氫氣比為50/100 sccm,製程壓力0.85 torr,製程溫度1000 °C成長30分鐘下,透過拉曼光譜分析可以得到D/G比為0.14,層數約為3層的高品質石墨烯薄膜。


    Currently, LEDs are using sapphire substrate; however, high lattice mismatch are existed between Gallium Nitride and sapphire substrates, causing 109~1010 cm2 of threading dislocation inside Gallium Nitride thin film, which seriously impacts the photoelectric performance of LED components. The application of patterned sapphire substrate(PSS) can effectively reduce dislocation density; yet, the c-plane area between the pattern still exists high density threading dislocation.
    In this study, we attempts to insert a graphene interlayer between the patterned sapphire substrate and the GaN film to further reduce the c-face dislocation density of the gallium nitride film on the patterned sapphire substrate..We use 8 inch low pressure chemical vapor deposition system (LPCVD)to grow graphene thin film on 4 inch PSS. Coat a layer of copper and nickel on PSS respectively, through adjusting the thickness of metal thin film, the proportion of reaction gas, the process temperature and different heating method to improve the quality of graphene thin film.In terms of copper process, due to low melting point of copper, large amount of copper steam will be produced through the process, caussing graphene thin film to be uneven on PSS. Thus we choose metal with a higher melting point; that is, nickel, to be the metal catalyst layer. In terms of nickel process, through Raman spectroscopy we can discover that increasing the flow of Argon before annealing can significantly improve the quality of graphene thin film. By adjusting different thickness of nickel thin film, with thickness at 200nm, annealing gas Argon/Hydrogen ratio is 100/100 sccm, Process reaction gas methane/hydrogen ratio is 50/100 sccm,process pressure 0.85 torr,process tempreture 1000°C with 10 minutes growth time, through raman spectroscopy we can observe high quality graphene thin film with D/G ratio of 0.14 with thickness of about 3 layers.

    摘要...........................................................I Abstract......................................................II 致謝..........................................................III 目錄..........................................................IV 表目錄........................................................VII 圖目錄........................................................VIII 第一章 緒論...................................................1 1.1 前言...................................................1 1.2 研究動機...............................................2 第二章 文獻回顧................................................4 2.1 石墨烯簡…...............................................4 2.2 石墨烯製備方法..........................................4 2.2.1 機械剝離法.........................................4 2.2.2 碳化矽磊晶成長法....................................5 2.2.3 氧化還原法.........................................7 2.2.4 固態碳源合成法.....................................8 2.2.5 電化學剝離法.......................................9 2.2.6 化學氣相沉積法.....................................11 2.3 石墨烯於過渡金屬上成長...................................12 2.3.1 石墨烯成長於鎳箔基板上..............................16 2.3.2 石墨烯成長於銅箔基板上..............................18 2.3.3 以鎳膜製備石墨烯...................................20 2.3.4 以銅膜製備石墨烯...................................21 2.4 拉曼光譜...............................................26 2.4.1 拉曼光譜基礎原理...................................26 2.4.2 拉曼光譜在石墨烯上的分析............................27 2.5 降低差排缺陷的方法......................................30 2.5.1 緩衝層............................................31 2.5.2 階段成長法.........................................32 2.5.3 磊晶側向成長.......................................34 2.5.4 使用圖案化藍寶石基板................................36 2.6 藍寶石基板上製備石墨烯應用於發光二極體.....................38 第三章 實驗方法.................................................39 3.1 實驗流程................................................39 3.2 實驗步驟與方法...........................................41 3.2.1 利用銅薄膜在三吋低壓化學氣相沉積系統製備石墨烯薄膜.....41 3.2.2 利用銅薄膜在八吋低壓化學氣相沉積系統製備石墨烯薄膜.....44 3.2.3 利用鎳薄膜在八吋低壓化學氣相沉積系統製備石墨烯薄膜.....47 3.3 實驗製程設備.............................................48 3.3.1 單區加熱爐管三吋低壓化學氣相沉積系統..................48 3.3.2 八吋低壓化學氣相沉積系統.............................49 3.3.3 蒸鍍機.............................................51 3.3.4 射頻濺鍍系統........................................52 3.4 實驗分析儀器..............................................53 3.4.1 拉曼光譜儀..........................................53 3.4.2 掃描式電子顯微鏡.....................................54 第四章 結果與討論..................................................56 4.1 利用銅膜金屬催化層製備石墨烯於圖案化藍寶石基板................56 4.1.1 利用三吋低壓化學氣相沉積系統於圖案化藍寶石基板製備石墨烯..56 4.1.2 利用八吋低壓化學氣相沉積系統於圖案化藍寶石基板製備石墨烯..57 4.1.2.1 製備石墨烯於小尺寸圖案化藍寶石基板...............57 4.1.2.2 製備石墨烯於四吋圖案化藍寶石基板.................62 4.2 利用鎳膜金屬催化層於圖案化藍寶石基板製備石墨烯.................69 4.2.1 製備石墨烯於小尺寸圖案化藍寶石基板......................69 4.2.2 利用鎳膜催化層於四吋圖案化藍寶石基板製備石墨烯...........73 第五章 結論與未來展望...............................................77 5.1 結論......................................................77 5.2 未來展望...................................................79 第六章 參考文獻.....................................................80

    [1]C.Lee, X.Wei, J. W.Kysar, andJ.Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, 321, 385 (2008).
    [2]R. R. Nair,1 P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim1, "Fine Structure Constant Defines," Science, 320 (5881), 1308 (2008)
    [3]A. K.Geim andK. S.Novoselov, "The rise of graphene," n Nanoscience and Technology, 11–19 (2009).
    [4]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov "Electric Field Effect in Atomically Thin Carbon Films," Science, 306(5696), 666–669 (2004).
    [5]Ekaterina A. Obraztsova,Alexander V. Osadchy, Elena D. Obraztsova, Serge Lefrant3,and Igor V. Yaminsky " Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers" Physica Status Solidi , 245, No. 10, 2055–2059 (2008).
    [6]W. Norimatsu,M. Kusunoki ,"Formation process of graphene on SiC ( 0 0 0 1 )," Physica E: Low-dimensional Systems and Nanostructures,42 691–694 (2010).
    [7]J Hass, W A de Heer and E H Conrad, "The growth and morphology of epitaxial multilayer graphene," Journal of Physics, Matter 20 (32), 323202 (2008).
    [8]Walt A. de Heer, Claire Berger, Xiaosong Wu, Phillip N. First, Edward H. Conrad, Xuebin Li, Tianbo Li, Michael Sprinkle, Joanna Hass, Marcin L. Sadowski, Marek Potemski, Gerard Martinez, "Epitaxial graphene," Solid State Communications, 143 92–100 (2007).
    [9]Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,
    A. Grill, Ph. Avouris "100-GHz Transistors from Wafer-Scale Epitaxial Graphene", Vol. 327, Issue 5966, pp. 662 (2010).
    [10]Dan Li, Marc B. Müller, Scott Gilje, Richard B. Kaner & Gordon G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, 3,101–105 (2008).
    [11]Hua Bai , Chun Li , and Gaoquan Shi,"Functional Composite Materials Based on Chemically Converted Graphene," Advanced Materials, 23, 1089–1115, (2011).
    [12]Zhengzong Sun, Zheng Yan, Jun Yao, Elvira Beitler,Yu Zhu, James M. Tour, “Growth of graphene from solid carbon sources,” Nature, 468, 549–552 (2010).
    [13]Wei Wu , Luis A. Jauregui , Zhihua Su , Zhihong Liu , Jiming Bao , Yong P. Chen ,and Qingkai Yu "Growth of Single Crystal Graphene Arrays by Locally Controlling Nucleation on Polycrystalline Cu Using Chemical Vapor Deposition," Advanced Materials, 23, 4898–4903 (2011).
    [14]Ching-Yuan Su,Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, and Lain-Jong Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS Nano,5(3),2332–2339 (2011).
    [15]Khaled Parvez,Rongjin Li,Sreenivasa Reddy Puniredd,Yenny Hernandez,Felix Hinkel,Suhao Wang,Xinliang Feng,and Klaus Mullen, "Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics" ACS Nano, 7(4), 3598-3606 (2013).
    [16]Khaled Parvez,Zhong-Shuai Wu,Rongjin Li,Xianjie Liu,Robert Graf,Xinliang Feng,and Klaus Müllen, "Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts," Journal of the American Chemical Society, 136, 16, 6083-6091, (2014).
    [17]Zheng Yan,Jian Lin,Zhiwei Peng,Zhengzong Sun,Yu Zhu,Lei Li,Changsheng Xiang,E. Loıc Samuel,Carter Kittrell,and James M. Tour, "Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils," ACS Nano, 6, 10, 9110-9117 (2012).
    [18]Sreekar Bhaviripudi,Xiaoting Jia,Mildred S. Dresselhaus,and Jing Kong, " Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area
    Graphene Using Copper Catalyst,"Nano Letters, 10, 10, 4128-4133 (2010).
    [19]Yufeng Hao,M. S. Bharathi, Lei Wang,Yuanyue Liu,Hua Chen,Shu Nie,Xiaohan Wang,Harry Chou,Cheng Tan,Babak Fallahazad, H. Ramanarayan,Carl W. Magnuson,Emanuel Tutuc,Boris I. Yakobson,Kevin F. McCarty,Yong-Wei Zhang, Philip Kim,James Hone,Luigi Colombo,Rodney S. Ruoff," The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper," Science,Vol. 342, Issue 6159, pp. 720-723 (2013).
    [20]Xuesong Li,Weiwei Cai,Jinho An,Seyoung Kim,Junghyo Nah,Dongxing Yang,
    Richard Piner,Aruna Velamakanni,Inhwa Jung,Emanuel Tutuc,Sanjay K. Banerjee,
    Luigi Colombo,Rodney S. Ruoff.,"Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils" Science, Vol. 324, Issue 5932, pp. 1312-1314 (2009).
    [21]K. S. Novoselov,V. I. Fal9ko,L. Colombo,P. R. Gellert,M. G. Schwab5 & K. Kim, "A roadmap for graphene,"Nature,volume 490,192–200 (2012).
    [22]Peter Sutter, Jerzy T. Sadowski, and Eli Sutter, " Graphene on Pt(111): Growth and substrate interaction," Physical Review B, 80, 245411 (2009).
    [23]S. Marchini, S. Günther, and J. Wintterlin," Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B, 76, 075429 (2007).
    [24]Johann Coraux,Alpha T.N Diaye, Carsten Busse, and Thomas Michely, "Structural Coherency of Graphene onIr(111)," Nano Letters, 8, 2, 565-570 (2008).
    [25]Xuesong Li,Weiwei Cai,Luigi Colombo,Rodney S. Ruoff, " Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters, 9, 12, 4268-4272 (2009).
    [26]Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, " Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, 93, 113103 (2008).
    [27]Robert S. Weatherup,Bernhard C. Bayer,Raoul Blume,Carsten Baehtz,Piran R. Kidambi,Martin Fouquet,Christoph T. Wirth,Robert Schlçgl,and Stephan Hofmann, “"On the Mechanisms of Ni-Catalysed Graphene Chemical Vapour Deposition," ChemPhysChem,13, 1 – 6 (2012).
    [28]Wei Liu, Hong Li, Chuan Xu, Yasin Khatami, Kaustav Banerjee, "Synthesis of high-quality monolayer and bilayer grapheneon copper using chemical vapor deposition,"Carbon, 49 ,4122 – 4130 (2011).
    [29]Jeong-Yuan Hwang,Chun-Chiang Kuo,Li-Chyong Chen,and Kuei-Hsien Chen, "Correlating defect density with carrier mobility in large-scaled graphene films:
    Raman spectral signatures for the estimation of defect density," Nanotechnology,21 465705 (2010).
    [30]Mark P. Levendorf,Carlos S. Ruiz-Vargas,Shivank Garg,Jiwoong Park, " Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Letters, 9, 12, 4479-4483 (2009).
    [31]Keun Soo Kim,Yue Zhao,Houk Jang,Sang Yoon Lee,Jong Min Kim,Kwang S. Kim
    , Jong-Hyun Ahn,Philip Kim, Jae-Young Choi& Byung Hee Hong., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, 457, 706–71 (2009).
    [32]Ariel Ismach,Clara Druzgalski, Samuel Penwell,Adam Schwartzberg,Maxwell Zheng,Ali Javey,Jeffrey Bokor,and Yuegang Zhang., "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces," Nano Letters, 10, 5, 1542-1548, (2010).
    [33]Phong Nguyen,Sanjay K. Behura,Michael R. Seacrist,and Vikas Berry, " Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics," ACS Applied Materials & Interfaces, 10, 31, 26517-26525, (2018).
    [34]Irene Calizo,Igor Bejenari,Muhammad Rahman, Guanxiong Liu, and Alexander A. Balandin, " Ultraviolet Raman microscopy of single and multilayer graphene," Journal of Applied Physics, 106, 043509 (2009).
    [35]L.M. Malard,M.A. Pimenta,G. Dresselhaus,M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, 473,51–87 (2009).
    [36]S. Yoshida, S. Misawa, and S. Gonda "Epitaxial growth of GaN/AlN heterostructures," Journal of Vacuum Science & Technology B, 1, 250 (1983).
    [37]H. Amano, N. Sawaki, and I. Akasaki, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, 48, 353–355 (1986).
    [38]S.Nakamura, “GaN Growth Using GaN Buffer Layer.” Japanese Journal of Applied Physics,30,L1705-L1707 (1991).
    [39]X.H. Wu!, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishr, S.P. DenBaars,,
    J.S. Speck, "Dislocation generation in GaN heteroepitaxy," Journal of Crystal Growth,189-190,231–243 (1998).
    [40]Lung-Chien Chen, Jeng-Bing Huang, Pei-Jong Cheng and Lu-Sheng Hong, "InGaN blue light-emitting diodes with ZnO nucleation layers prepared by the sol–gel method, Semiconductor Science and Technology,22(10),1178-1182 (2007).
    [41]A. Ougazzaden, D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier,T. Aggerstame, S. Ould Saad, J. Martind, Z. Djebbour, O. Durand, G. Garry, A. Lusson ,D. McGrouther, J.N. Chapman, "Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates," Journal of Crystal Growth, 310,944–947 (2008)
    [42]Shugo Nitta, Jun Yamamoto, Yoshihisa Koyama, Yuzaburoh Ban,Kiyohide Wakao, Kiyoshi Takahashi, “Facet-controlled three-step growth of high-quality GaN on
    sapphire substrates by mass-production-type metalorganic vapor phase epitaxy,” 272,438–443 (2004).
    [43]Kazumasa Hiramatsu, Katsuya Nishiyama, Masaru Onishi,Hiromitsu Mizutani, Mitsuhisa Narukawa, Atsushi Motogaito, Hideto Miyake,Yasushi Iyechik, Takayoshi Maed., "Fabrication and characterization of low defect density GaN
    using facet-controlled epitaxial lateral overgrowth (FACELO)," Journal of Crystal Growth, 221,316-326 (2000).
    [44]Yoshiaki Honda, Yasushi Iyechika, Takayoshi Maeda, Hideto Miyake and Kazumasa Hiramatsu, "Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth," Japanese Journal of Applied Physics,40,L309-L312 (2001).
    [45]Jae-Hoon Lee, Jeong-Tak Oh,Jin-Sub Park,Je-Won Kim,Yong-Chun Kim,
    Jeong-Wook Lee, and Hyung-Koun Cho, "Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire," physica status solidi, ) 3, No. 6, 2169–2173 (2006).
    [46]J. C. Song, D. H. Kang, B. Y. Shim, E. A Ko,D. W. Kim, S. Kannappan and C. R. Lee.,"Characteristics Comparison between GaN Epilayers Grown on Patterned
    and Unpatterned Sapphire Substrate (0001)," Advanced Materials Research,29-30 355-358 (2007).
    [47]Y.B. Tao, T.J. Yu, Z.Y. Yang, D. Ling, Y. Wang, Z.Z. Chen, Z.J. Yang, G.Y. Zhang, "Evolution and control of dislocations in GaN grown on cone-patterned
    sapphire substrate by Metal Organic Vapor Phase Epitaxy," Journal of Crystal Growth 315,183–187 (2011).
    [48]Dong-Hun KANG, Jae-Chul SONG, Byung-Young SHIM, Eun-A KO,Dong-Wook KIM, Santhakumar KANNAPPAN, and Cheul-Ro LEE, "Characteristic Comparison of GaN Grown on Patterned Sapphire Substrates Following Growth Time," Japanese Journal of Applied Physics, 46(4B),2563-2566 (2007).
    [49]Tae Hoon Seo, Ah Hyun Park, Sungchan Park, Yong Hwan Kim, Gun Hee Lee, Myung Jong Kim, Mun Seok Jeong, Young Hee Lee, Yoon-Bong Hahn & Eun-Kyung Suh, " Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes," Scientific Reports, 3, 3201 (2013).
    [50]Chun Hong Kang, Chao Shen, M. Shuaib M. Saheed, Norani Muti Mohamed, Tien Khee Ng, Boon S. Ooi, and Zainal Arif Burhanudin., "Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes,"Applied Physics Letters, 109, 081902 (2016).
    [51]Zhaolong Chen, Xiang Zhang, Zhipeng Dou, Tongbo Wei, Zhiqiang Liu, Yue Qi,
    Haina Ci, Yunyu Wang, Yang Li, Hongliang Chang, Jianchang Yan, Shenyuan Yang,Yanfeng Zhang, Junxi Wang, Peng Gao,Jinmin Li,and Zhongfan Liu.," High-Brightness Blue Light-Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer," Advanced Materials,30(30), 1801608 (2018).
    [52]Hongliang Chang, Zhaolong Chen,Weijiang Li,Jianchang Yan,Rui Hou,Shenyuan Yang,Zhiqiang Liu,Guodong Yuan,Junxi Wang,Jinmin Li,Peng Gao,and Tongbo Wei, "Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate," Applied Physics Letters, 114, 091107 (2019).
    [53]Gang Wang,Yun Zhao,Ya Deng,Wenbin Huang,Xiaokun Fan,Jian Zhang,Ruifei Duan,Lianfeng Sun, "Lattice Selective Growth of Graphene on Sapphire Substrate," The Journal of Physical Chemistry C, 119, 1, 426-430 (2015).

    無法下載圖示 全文公開日期 2024/11/22 (校內網路)
    全文公開日期 2029/11/22 (校外網路)
    全文公開日期 2029/11/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE