簡易檢索 / 詳目顯示

研究生: 趙梓合
Tzu-Ho Chao
論文名稱: 並聯型切換式電容控制無線功率傳輸系統之研製
Design and Implement of Wireless Power Transfer with Parallel Type Switched-Controlled Capacitor
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 開關控制電容器無線功率傳輸雙側LCC諧振式轉換器磁場耦合
外文關鍵詞: Switched-Controlled Capacitor, Wireless Power Transfer, Doubled Side-LCC compensation, Magnetic field coupling
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為探討並聯型切換式電容器應用於電動車無線功率傳輸系統上,使用數位訊號處理器控制切換式電容器改變其等效電容值,進而改變諧振槽增益使輸出電壓在不同負載及不同偏移量下能夠維持。本論文根據國際電動車規範(Society of Automotive Engineers, SAE J2954TM )所提出之WPT3/Z2(功率等級/Z軸規格)架構、介紹其充電盤偏移量限制、傳送端(Ground Assembly, GA)線圈、接收端線圈(Vehicle Assembly, VA)之規格與圈數。最後為符合SAE J2954TM所提出之WPT3/Z2規範,諧振槽輸入端最大電流40 A與GA線圈最大電流75 A之限制與諧振槽可變元件之電抗限制,將對(Double Side LCC, DS-LCC)諧振式轉換器進行分析與設計。為方便分析將介紹無線功率傳輸之耦合線圈等效電路模型,推導出DS-LCC諧振式轉換器之諧振槽轉移函數,即可繪出不同負載與諧振參數下之輸出電壓,最後根據SAE J2954TM規範所提出之諧振槽可變元件,將提出切換式電容電路介紹其動作原理與控制方法,並比較不同類型之差異,最後將其與DS-LCC諧振式轉換器整合應用。
本論文中將提出一套設計流程,依照此流程進行設計,可確保WPT3/Z2之並聯型切換式電容拓撲電路能符合SAE J2954TM所提出之規範,並在規格下之負載範圍與耦合係數範圍內,以固定操作頻率85 kHz下皆能正常動作。最後實作出一組11.1 kW無線功率傳輸系統原型機,此原型機在GA線圈與VA線圈在垂直距離相差140 mm至210 mm之間以及X軸偏移量75 mm,Y軸偏移量100 mm時皆能達到輸出規格要求,最高效率為90.9 %。


This thesis explores the application of parallel-switched capacitors in a 11.1 kW wireless power transfer system for electric vehicles. It focuses on using a digital signal processor to control the switched capacitors, adjusting their equivalent capacitance values to modify the resonant tank gain and maintain the output voltage under various loads and offsets. The design is based on the WPT3/Z2 framework proposed by the Society of Automotive Engineers (SAE J2954TM), which specifies the charging pad implementation offsets, specifications, and turns of the Ground Assembly (GA) and Vehicle Assembly (VA) coils. The paper also analyzes and designs a Double Side LCC (DS-LCC) resonant converter to meet the SAE J2954TM specifications, considering current limits and reactance restrictions. The proposed design process ensures compliance with the specifications and allows for the implementation of a functioning 11.1 kW wireless power transfer system prototype with efficient performance.
The thesis proposes a design process that ensures compliance with the SAE J2954TM specifications for the parallel-switched capacitor topology of the WPT3/Z2. Following this process guarantees normal operation of the circuit at a fixed operating frequency of 85 kHz within the specified circuit specifications, load range, and coupling coefficient range. Finally, a prototype of an 11.1 kW wireless power transfer system is implemented, demonstrating that the prototype meets the output specifications with a maximum efficiency of 90.9% when the vertical distance between the GA and VA coils varies from 140 mm to 210 mm, and the X-axis offset is 75 mm and the Y-axis offset is 100 mm.

摘要 i Abstract ii 目錄 iv 圖索引 vi 表索引 x 第一章 緒論 1 1.1 研究動機 1 1.2 章節大綱 3 第二章 功率傳輸線圈模型分析與無線充電架構及規範介紹 4 2.1 功率傳輸線圈模型分析 4 2.1.1 變壓器模型 4 2.1.2 電感耦合模型 5 2.1.3 電感耦合T模型 6 2.1.4 非理想變壓器T模型 7 2.2 無線充電拓樸架構 8 2.3 SAE J2954TM規範 11 2.3.1 無線充電系統分類 11 2.3.2 WPT3/Z2架構介紹 13 2.3.3 傳送端(GA)、接收端(VA)充電盤架構介紹 13 第三章 切換式電容拓樸架構分析 18 3.1 串聯型切換式電容動作分析 21 3.2 串聯型切換式電容數學分析 26 3.3 並聯型切換式電容動作分析 29 3.4 並聯型切換式電容數學分析 33 3.5 串聯型與並聯型切換式電容比較 37 第四章 DS-LCC諧振式轉換器與並聯整流器分析 39 4.1 DS-LCC諧振式轉換器轉移器架構介紹 39 4.2 基本波近似法 40 4.3 DS-LCC諧振式轉換器轉移函式推導 42 4.4 並聯整流器架構分析 44 4.5 交錯式整流架構與負載電阻壓縮之關係 46 4.6 LCC-SP 諧振式轉換器與交錯式整流器整合應用 48 第五章 電路規格與設計考量 50 5.1 電路規格 50 5.2 元件參數設計流程 51 5.2.1 交錯式整流設計 51 5.2.2 諧振槽參數設計 53 5.2.3 功率開關選用 63 第六章 電路模擬與實驗結果 65 6.1 模擬與實際量測波形 65 6.1.1 WPT3/Z2切換式電容拓樸架構模擬 65 6.1.2 WPT3/Z2切換式電容拓樸架構實測 72 6.2 無線充電實體架構圖 76 第七章 結論與未來展望 79 7.1 結論 79 7.2 未來展望 79 參考文獻 81

[1] A Global comparison of the life- cycle greenhouse gas emissions of compustion engine and electric passenger cars JULY 20,2021 By:Georg Bieker
[2] Wireless power transfer–task 26 final report.pdf Accessed: Jul. 20, 2020.[Online].Available:http://www.ieahev.org/assets/1/7/Task_26_Final_Report_v1.7_(FINAL2).pdf Google Scholar
[3] A. A. S. Mohamed, A. Meintz, P. Schrafel and A. Calabro, "In-Vehicle Assessment of Human Exposure to EMFs from 25-kW WPT System Based on Near-Field Analysis," 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA, 2018, pp. 1-6, doi: 10.1109/VPPC.2018.8605011.
[4] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, ‘‘Wireless power transfer via strongly coupled magnetic resonances,’’ Science, vol. 317, no. 5834, pp. 83–86, 2007.
[5] S. Y. R. Hui, W. Zhong, and C. K. Lee, ‘‘A critical review of recent progress in mid-range wireless power transfer,’’ IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014
[6] A.A. Mohamed, A. Meintz, L. Zhu ‘‘System design and optimization of in-route wireless charging infrastructure for shared automated electric vehicles’’ IEEE Access, 7 (2019), pp. 79968-79979
[7] Interoperability of the universal WPT3 transmitter with different receivers for electric vehicle inductive charger Ahmed A.S. Mohamed a, * , Ahmed A. Shaier b , Hamid Metwally b , Sameh I. Selem b
[8] SAE Recommended Practice J2954 (rev. 201711): Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, 2017.
[9] S. Li, W. Li, J. Deng, and C. C. Mi, ‘‘A double-sided LCC compensation network and its tuning method for wireless power transfer,’’ IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 1–12, Jun. 2015.
[10] Y. H. Kim and K. H. Jin, "Design and Implementation of a Rectangular-Type Contactless Transformer," in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, Dec. 2011.
[11] M. Ryu, H. Cha, Y. Park and J. Back, "Analysis of The Contactless Power Transfer System Using Modelling and Analysis of The Contactless Transformer," Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, Raleigh, NC, 2005, pp. 7
[12] D. Thenathayalan and J. H. Park, "Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, Oct. 2015.
[13] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014.
[14] W. Li, H. Zhao, S. Li, J. Deng, T. Kan, and C.C. Mi, Integrated LCC Compensation Topology for Wireless Charger in Electric and Plug-in Electric Vehicles, IEEE Trans. Ind. Electron., vol. 62, no. 7, 2014, pp. 4215-4225.
[15] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-sided LCLC compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, 2015, pp. 6011–6014
[16] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jun. 2013.
[17] Z. Pantic, B. Sanzhong, and S. Lukic, “ZCS LCC-compensated resonant inverter for inductive-power-transfer application,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3500–3510, Aug. 2011.
[18] S. Samanta and A. K. Rathore, “Analysis and design of load independent ZPA operation for P/S, PS/S, P/SP, and PS/SP tank networks in IPT applications,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6476–6482, Aug. 2018.
[19] J. Hou, Q. Chen, S.-C. Wong, and C. K. Tse, and X. Ruan, “Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer,” IEEE J. Emerging. Sel. Topics Power Electron., vol. 3, no. 1, pp. 124–136, Mar. 2015.
[20] W. Li, H. Zhao, J. Deng, S. Li, and C. Mi, “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4429–4439. Jun. 2016.
[21] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
[22] W. Zhang and C. C. Mi, “Compensation topologies of high-power wireless power transfer systems,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4768–4778, Jun. 2016.
[23] W. Zhou and H. Ma, “Design considerations of compensation topologies in ICPT system,” in Proc. IEEE Conf. Appl. Power Electron., 2007, pp. 985– 990.
[24] Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, “A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525–8536, Oct. 2018
[25] Y. Chen, N. Yang, Q. Li, Z. He, and R. Mai, “New parameter tuning method for LCC/LCC compensated IPT system with constant voltage output based on LC resonance principles,” IET Power Electron., vol. 12, no. 10, pp. 2466–2474, Aug. 2011.
[26] J. Hou, Q. Chen, S.-C. Wong, C. K. Tse, and X. Ruan, “Analysis and control of series/series-parallel compensated resonant converters for contactless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 124–136, Mar. 2015.
[27] Y. Su, C. Tang, S. Wu, and Y. Sun, “Research of LCL resonant inverter in wireless power transfer system,” in Proc. Int. Conf. Power Syst. Technol., Chongqing, China, 2006, pp. 1–6.
[28] N. Keeling, G. A. Covic, F. Hao, L. George, and J. T. Boys, “Variable tuning in LCL compensated contactless power transfer pickups,” in Proc. IEEE Energy Convers. Congr. Expo., San Jose, CA, USA, 2009, pp. 1826– 1832.
[29] D. Xin et al., “Improved LCL resonant network for inductive power transfer system,” in Proc. IEEE PELS Workshop Emerg. Technol.: Wireless Power, Daejeon, South Korea, 2015, pp. 1–5.
[30] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
[31] H. Hao, G. A. Covic, and J. T. Boys, “An approximate dynamic model of LCL- $T$-based inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554–5567, Oct. 2014.
[32] C. Liu, S. Ge, Y. Guo, H. Li, and G. Cai, “Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis,” IET Power Electron., vol. 9, no. 11, pp. 2262–2270, 2016.
[33] Z. Pantic, S. Bai, and S. M. Lukic, “ZCS LCC-compensated resonant inverter for inductive-power-transfer application,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3500–3510, Aug. 2011
[34] US Patent for Wireless energy transfer systems Patent (Patent # 8,461,719)]
[35] A.A.S. Mohamed, A.A. Shaier, H. Metwally, S.I. Selem A comprehensive overview of inductive pad in electric vehicles stationary charging Appl Energy, 262 (Mar. 2020)
[36] SAE Recommended Practice J2954 (rev. 201711). Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology; 27-11-2017; SAE International: Troy, MI, USA, 2017.
[37] E. S. Lee, B. G. Choi, J. S. Choi, D. T. Nguyen, and C. T. Rim, “Wide-range adaptive IPT using dipole-coils with a reflector by variable switched capacitance,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 8054–8070, Oct. 2017
[38] F. Lu, H. Hofmann, J. Deng and C. Mi, "Output power and efficiency sensitivity to circuit parameter variations in double-sided LCCcompensated wireless power transfer system," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 597-601.
[39] Xuewei Pan , Member, IEEE, Chongwei Zhang , Haowei Niu , Student Member, IEEE, Yu Zuo , Student Member, IEEE, and Fei Zhao , Member, IEEE A PS/S "Current-Fed IPT System With Variable Capacitors for Achieving ZPA Operation" IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 4, AUGUST 2021
[40] D.-H. Kim and D. Ahn, “Self-tuning LCC inverter using PWMcontrolled switched capacitor for inductive wireless power transfer,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3983–3992, May 2019
[41] J. Zhang, J. Zhao, Y. Zhang, and F. Deng, “A wireless power transfer system with dual switch-controlled capacitors for efficiency optimization,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6091–6101, Jun. 2020.
[42] J. Zhao, J. Zhang, and Y. Zhu, “A flexible wireless power transfer system with switch controlled capacitor,” IEEE Access, vol. 7, pp. 106873–106881, 2019.
[43] C. S. Wong, Y. P. Chan, L. Cao, L. Wang, K. H. Loo, and M. C. Wong, “A single-stage dynamically compensated IPT converter with unity power factor and constant output voltage under varying coupling condition,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10121–10136, Oct. 2020.
[44] J. Zeng, J. Liu, J. Yang, and F. Luo, “A voltage-feed high-frequency resonant inverter with controlled current output as a high-frequency AC power source,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4854–4863, Sep. 2015.
[45] Teaching of Fourier series expansions in undergraduate education Manuel J. C. S. Reis;Salviano Soares;Simão Cardeal;Raul Morais;Emanuel Peres;Paulo J. S. G. Ferreira 2013 IEEE Global Engineering Education Conference(EDUCON) Year:2013 Conference Paper Publisher: IEEE
[46] J. Tian and A. P. Hu, "A DC-Voltage-Controlled Variable Capacitor for Stabilizing the ZVS Frequency of a Resonant Converter for Wireless Power Transfer," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2312-2318, March 2017, doi: 10.1109/TPEL.2016.2559798.
[47] X. Pan, C. Zhang, H. Niu, Y. Zuo and F. Zhao, "A PS/S Current-Fed IPT System With Variable Capacitors for Achieving ZPA Operation," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4918-4931, Aug. 2021, doi: 10.1109/JESTPE.2020.3036639.
[48] C. Zheng et al., "High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
[49] R. Chen et al., "Analysis and Parameters Optimization of a Contactless IPT System for EV Charger," Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual 77 IEEE, Fort Worth, TX, 2014, pp. 1654-1661
[50] DANILOVIC, Milisav; KURS, Andre B. Wireless power systems having interleaved rectifiers. U.S. Patent No 10,418,841, 2019.

無法下載圖示 全文公開日期 2026/07/28 (校內網路)
全文公開日期 2026/07/28 (校外網路)
全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE