簡易檢索 / 詳目顯示

研究生: 林廷隆
TING-LONG,LIN
論文名稱: 應用於電動載具之無線功率傳輸系統研製
Design and Implement of Vehicle Wireless Power Transfer System
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching,Hsieh
張佑丞
Yu-Chen,Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 補償架構SAE J2954TMLCC-SP 諧振式轉換器交錯式整流器
外文關鍵詞: Compensation networks, SAE J2954TM, LCC-SP Com- pensated, Interleaved rectifier
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論應用於電動車上 11.1kW WPT3 無線功率傳輸電
    路之架構分析與比較、線圈設計與諧振槽設計,最後完成實作驗證。
    本論文首先說明非理想變壓器之等效模型,與無線功率傳輸基本簡
    介,並介紹國際規範 SAE J2954TM 無線充電功率等級與 WPT3/Z2 架
    構,說明初級側(GA)線圈、次級側(VA)線圈之規格、圈數,實作規格
    為線圈間垂直距離為 140 mm~ 210mm、線圈平行軸偏移量為 X:0~75
    mm 、Y:0~100mm。說明 LCC-SP 諧振式轉換器架構分析與交錯式整
    流器架構分析並將LCC-SP 諧振式轉換器與交錯式整流器整合應用。
    透過分析與設計並參考 SAE J2954TM WPT3/Z2 規範中的輸出功
    率、線圈間距離,執行諧振槽設計與諧振元件選用流程,最後實做出
    一組操作頻率為 85kHz 下輸入功率 11.1kW 無線功率傳輸系統原型
    機,輸入與輸出線圈在垂直距離相差 140mm 至 210mm 之間以及 X
    軸偏移量 75 mm, Y 軸偏移量 100 mm 時皆能達到輸出規格要求,最
    高效率為91.7%。


    This thesis presents the study and, design implementation of 11.1kW
    wireless power transmission circuit operation on electric vehicles. In the
    beginning, the basic introduction about WPT is illustrated. Equivalent
    models of non-ideal transformer are analyzed to simplify the equivalent
    circuit of resonant tank. And introduce the international standard SAE
    J2954TM wireless charging power level and WPT3/Z2 architecture, and
    the specifications, number of turns and distance between the transmitter
    coil and the receiver coil, Z-axis 140 mm~210mm, coil X-Y axis offset X:
    0~75 mm, Y: 0~100 mm. Finally, analysis LCC-SP and interleaved rectifier
    and conform application.
    Through analysis and refer to the output power and distance between
    coils of the SAE J2954TM WPT3/Z2 specification, and design resonance
    parameters and components, and then frequency is 85kHz, input power
    11.1kW wireless power transmission system, The output specifications can
    be met when the coil is between 140mm and 210mm, and the X-axis offset
    is 75mm, and the Y-axis offset is 100mm. In this condition the highest ef-
    ficiency is 91.7%.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文章節介紹 第二章 無線充電系統與架構分析 2.1 非理想無線功率傳輸線圈之等效電路模型 2.2 無線充電諧振槽架構 2.3 無線功率傳輸線圈與耦合係數及感值關係 2.4 SAE J2954TM 規範 2.4.1 無線充電系統功率等級 2.4.2 WPT3/Z2架構介紹 2.4.3 初級側(GA)線圈、次級側(VA)線圈介紹 2.4.4 次級側線圈與初級側線圈中心點之偏移量限制 第三章LCC-SP諧振轉換器與交錯式整流器分析 3.1 LCC-SP 諧振式轉換器架構分析 3.2 LCC-SP 諧振式轉換器轉移函式推導 3.3 交錯式整流器架構分析 3.4 交錯式整流器與輸出負載範圍壓縮之關係 3.5 LCC-SP 諧振式轉換器與交錯式整流器整合應用 第四章 設計考量與電路模擬 4.1 電路規格 4.2 元件參數設計流程 4.2.1 功率開關選用 4.2.2 初級側線圈、次級側線圈設計 4.2.3 交錯式整流設計 4.2.4 諧振槽設計 4.3 電路模擬 第五章 實驗驗證 5.1 實際量測波形與數據 5.2 無線充電系統實體架構圖 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] Burnham, Andrew, Gohlke, David, Rush, Luke, Stephens, Thomas, Zhou, Yan, Delucchi, Mark A., Birky, Alicia, Hunter, Chad, Lin, Zhenhong, Ou, Shiqi, Xie, Fei, Proctor, Camron, Wiryadinata, Steven, Liu, Nawei, and Boloor, Madhur. “Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains,” United States: N. p., 2021.
    [2] B. Frieske, M. Kloetzke and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric vehicles, ” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-12.
    [3] C. Qiu, K. T. Chau, C. Liu and C. C. Chan, “Overview of Wireless Power Transfer for Electric Vehicle Charging,” Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, Barcelona, 2013, pp. 1-9.
    [4] G. A. Covic and J. T. Boys, “Inductive Power Transfer,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
    [5] Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, “An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
    [6] F. Musavi and W. Eberle, “Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging,” in IET Power Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
    [7] D. Bululukova and M. Kramer, “Application of Existing Wireless Power Transfer Standards in Automotive Applications,” 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, 2014, pp. 863-864.
    [8] J. H. Kim et al., “Development of 1-MW Inductive Power Transfer System for a High-Speed Train,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6242-6250, October 2015
    [9] B. H. Choi, E. S. Lee, J. H. Kim and C. T. Rim, “7m-Off-Long-Distance Extremely Loosely Coupled Inductive Power Transfer Systems Using Dipole Coils,” Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 858-563.
    [10] 王思凱,「高效能7 kW無線功率傳輸系統之研製」,國立台灣科技大學電子工程系碩士論文,2019年。
    [11] R. Haldi and K. Schenk, “A 3.5 kW Wireless Charger for Electric Vehicles with Ultra High Efficiency,” Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 668-674. W. Zhang and C. Mi, "Compensation topologies of high-power
    wireless power transfer systems," IEEE Trans. Veh.Technol., vol. 65, no. 6, pp. 4768-4778, June 2016.
    [12] M. Ishihara, K. Umetani and E. Hiraki, "Strategy of topology selection based on quasi-duality between series – series and series – parallel topologies of resonant inductive coupling wireless power transfer systems," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 6785-6798, July 2020.
    [13] V. Shevchenko, O. Husev, R. Strzelecki, B. Pakhaliuk, N. Poliakov and
    N. Strzelecka, "Compensation topologies in IPT systems: standards, requirements, classification, analysis, comparison and application," IEEE Access, vol. 7, pp. 120559-120580, 2019.
    [14] H. Feng, R. Tavakoli, O. C. Onar and Z. Pantic, "Advances in high-power wireless charging systems: overview and design considerations," IEEE Trans. Transport. Electrific., vol. 6, no. 3, pp. 886-919, Sept. 2020.
    [15] Y. Zhang, T. Kan, Z. Yan and C. C. Mi, "Frequency and voltage tuning
    of series–series compensated wireless power transfer system to sustain rated power under various conditions", IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 2, pp. 1311-1317, Jun. 2019.
    [16] J. Yang, X. Zhang, K. Zhang, X. Cui, C. Jiao and X. Yang, "An LCC-SP compensated inductive power transfer system and design considerations for enhancing misalignment tolerance," IEEE Access, vol. 8, pp. 193285-193296, 2020.
    [17] Y. Wang, Y. Yao, X. Liu, and D. Xu, "S/CLC compensation topology
    analysis and circular coil design for wireless power transfer," IEEE Trans. Transport. Electrific., vol. 3, no. 2, pp. 496–507, Jun. 2017.
    [18] Y. Yao, Y. Wang, X. Liu and D. Xu, "Analysis, design, and optimization of LC/S compensation topology with excellent load-independent voltage output for inductive power transfer," IEEE Trans. Transport. Electrific., vol. 4, no. 3, pp. 767-777, Sept. 2018.
    [19] Y. Wang, Y. Yao, X. Liu, D. Xu and L. Cai, "An LC/S compensation
    topology and coil design technique for wireless power transfer," IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2007-2025, March 2018.
    [20] Y. Yao, Y. Wang, X. Liu, F. Lin and D. Xu, "A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance," IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525-8536, Oct. 2018.
    [21] T. Kan, T. Nguyen, J. C. White, R. K. Malhan and C. C. Mi, "A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design," IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1638-1650, Feb. 2017.
    [22] S. Li, W. Li, J. Deng, T. D. Nguyen and C. C. Mi, "A double-sided LCC compensation network and its tuning method for wireless power transfer," IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2261-2273, June 2015.
    [23] T. Imura and Y. Hori, "Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula," in IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4746-4752, Oct. 2011, doi: 10.1109/TIE.2011.2112317.
    [24] K. E. Koh, T. C. Beh, T. Imura and Y. Hori, "Impedance Matching and Power Division Using Impedance Inverter for Wireless Power Transfer via Magnetic Resonant Coupling," in IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2061-2070, May-June 2014, doi: 10.1109/TIA.2013.2287310.
    [25] K. Niotaki, A. Georgiadis, A. Collado and J. S. Vardakas, "Dual-Band Resistance Compression Networks for Improved Rectifier Performance," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3512-3521, Dec. 2014, doi: 10.1109/TMTT.2014.2364830.
    [26] Bosshard, R.; Mühlethaler, J.; Kolar, J.W.; Stevanovi´c, I. Optimized Magnetic Design for Inductive Power Transfer Coils. InProceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach,
    [27] Shi, X.; Qi, C.; Qu, M.; Ye, S.; Wang, G.; Sun, L.; Yu, Z. Effects of Coil Shapes on Wireless Power Transfer via Magnetic ResonanceCoupling. J. Electromagn. Waves Appl. 2014, 28, 1316–1324.
    [28] Yang, Y.; Cui, J.; Cui, X. Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric VehicleWireless Power Transfer System. Energies 2020, 13, 4143
    [29] SAE Recommended Practice J2954 (rev. 201711). Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology; 27-11-2017; SAE International: Troy, MI, USA, 2017.
    [30] Kim, M.Y., Kim, B.C., Park, K.B., et al.: “LLC series resonant converter with auxiliary hold-up time compensation circuit”. Proc. IEEE Conf. Power Electronics-ECCE Asia, Jeju, Korea, 2011, pp. 628–633
    [31] DANILOVIC, Milisav; KURS, Andre B. Wireless power systems having interleaved rectifiers. U.S. Patent No 10,418,841, 2019.

    無法下載圖示 全文公開日期 2024/09/10 (校內網路)
    全文公開日期 2024/09/10 (校外網路)
    全文公開日期 2024/09/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE