簡易檢索 / 詳目顯示

研究生: 黃郁仁
Yu-Ren Huang
論文名稱: 串聯-串聯諧振式無線電力傳輸系統之相移CC/CV控制
Phase-Shift CC/CV Control of Series-Series Resonant Wireless Power Transfer System
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 謝耀慶
Yao-Ching Hsieh
張佑丞
Yu-Chen Chang
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 磁共振無線電力傳輸串聯-串聯諧振相移控制CC/CV控制
外文關鍵詞: Magnetic Resonance, Wireless Power Transfer, Series-Series Resonance, Phase Shift Control, CC/CV Control
相關次數: 點閱:162下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要完成串聯諧振式無線電力傳輸,並結合相移與CC/CV模式對電池充電進行控制。適合的應用於電動車與AGV(Automated Guided Vehicle)充電場合。本論文首先將介紹無線傳輸系統的分類與簡介,並選用磁共振無線電力傳輸系統作為研究主題。接著是介紹無線功率傳輸線圈之等效模型,並透過推導了解不同模型之間關係。再來針對磁場無線電力傳輸系統簡單介紹,利用無線功率傳輸線圈等效模型來分析耦合時電路的工作狀態及工作在不同頻率點時的特性,最後分析相移控制之動作區間與控制原理,以即CC/CV對電池充電控制的分析與設計。透過分析與設計,並且參考市售AGV規格,最後實作出一1 kW相移調變之串聯-串聯諧振式無線電能傳輸系統。此系統可在兩線圈間距30 mm傳遞功率,最高效率可達90%。


    This thesis focuses on completes series-series resonance wireless power trans-mission, and combines phase shift and CC/CV to control battery charging. Suitable applications are the charging of electric vehi-cles and AGV(Automated Guided Vehicles). This thesis first introduces the classify cation and introduction of wireless transmission system. Next the equivalent model of the wireless power transmission coil is intro-duced, and the relationship between different models is understood through derivation. And brief introduction to the magnetic field wireless power transmission system, the equivalent model of the wireless power transmission coil is used to analyze the working state of the circuit during coupling and its characteristics when it works at different frequency points. Finally, the action interval and control principle of the phase shift control are analyzed. And analysis and design of CC/CV for battery charging control. Through analysis and design, and referring to com-mercially available AGV specifications, a series resonant wireless power transmission system with 1kW phase shift modulation is finally imple-mented. This system can transmit power at a distance of 30 mm between two coils, with a maximum efficiency of 90%.

    目錄 摘要 iv Abstract v 致謝 vi 目錄 vii 圖索引 ix 表索引 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 無線電力傳輸系統種類與簡介 2 1.2.1 磁感應 2 1.2.2 磁共振 3 1.2.3 雷射傳輸 4 1.2.4 微波傳輸 5 第二章 無線功率傳輸線圈之等效模型介紹 6 2.1 變壓器等效模型 6 2.2 耦合電感等效模型 7 2.3 耦合電感與變壓器模型間轉換推導 8 第三章 串聯諧振式無線電力傳輸系統分析 12 3.1 串聯諧振式無線電力傳輸系統介紹 12 3.2 串聯諧振式無線電力傳輸相移控制介紹 13 3.3 串聯諧振式無線電力傳輸之增益曲線分析 15 3.3.1 串聯諧振式系統總增益分析 15 3.3.2 基於耦合電感模型之增益曲線分析 16 3.3.3 基於變壓器模型之增益曲線分析 18 3.4 電容性、電感性之區間分析 20 3.5輸出穩壓控制分析 23 3.4.1 後置轉換器 23 3.4.2 頻率調變控制 24 3.4.3 相移調變控制 26 第四章 無線電力傳輸系統之相移CC/CV控制 27 4.1 無線電力傳輸系統之恆定電流控制分析 27 4.2 無線電力傳輸系統之恆定電壓控制分析 29 4.3 無線電力傳輸系統之恆定電壓、電流整合控制 30 第五章 電路設計 33 5.1 設計目標與規格 33 5.2 規格參數與元件設計流程 33 5.2.1 諧振頻率設計 33 5.2.2 線圈設計 34 5.2.3 諧振電容設計 36 5.2.4 功率級元件設計 36 第六章 實驗結果 38 第七章 結論與未來展望 49 7.1 結論 49 7.2 未來展望 49 參考文獻 51

    參考文獻
    [1] B. Frieske, M. Kloetzke and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric ve-hicles, ” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-12.
    [2] H. Ribberink and E. Entchev, “Electric vehicles —A ‘one-size-fits-all’ solution for emission reduction from transportation,” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-7.
    [3] S. Ahn, J. Pak, T. Song, H. Lee, J.-G. Byun, D. Kang, C.-S. Choi, E. Kim, J. Ryu, M. Kim, Y. Cha, Y. Chun, C.-T. Rim, J.-H. Yim, D.-H. Cho and J. Kim, “Low frequency electromagnetic field reduction tech-niques for the on-line electric vehicle (OLEV)”, IEEE Interna-tional Symposium on Electromagnetic Compatibility, Jul. 25-30, pp. 625-630, 2010.
    [4] N. Hashimoto, S. Thompson, Y. Takinami, K. Mizushima, T. Otsuka, M. Omae, S. Kato, "Introduction of prototype of remote type au-tomated vehicle system by using communication between operator and vehicles in real environment," 2018 16th International Confer-ence on Intelligent Transportation Systems Telecommunications (ITST), Lisboa, 2018, pp. 1-2.
    [5] Gopinath, Ashwin (August 2013), All About Transferring Power Wirelessly, Electronics For You E-zine (EFY Enterprises Pvt. Ltd.): 52–56. Retrieved January 16, 2015.
    [6] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljaˇci´c, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, July 2007.
    [7] T. Imura, H. Okabe and Y. Hori, “Study on open and short end hel-ical antennas with capacitor in series of wireless power transfer using magnetic resonant coupling”, 35th Annual Conference of IEEE, Industrial Electrics, Nov. 3-5, pp.3848-3853, 2009.
    [8] C. Qiu, K. T. Chau, C. Liu and C. C. Chan, “Overview of Wireless Power Transfer for Electric Vehicle Charging,” Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, Barcelona, 2013, pp. 1-9.
    [9] Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, “An Overview of Technical Challenges and Advances of Inductive Wire-less Power Transmission,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
    [10] A. Satyamoorthy, P. Riehl, H. Akram, Y. C. Yen, J. C. Yang, B. Juan, C. M. Lee, F. C. Lin, "Wireless power receiver for mobile devices supporting inductive and resonant operating modes," 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 1-4.
    [11] W. Zhiwei, W. Yi, S. Junjie, Y. Zhongping, L. Fei, L. Ming, L. Nan, Z. Jinxiao, Y. Ting, "A 600kW Wireless Power System for Modern Tram," 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Korea, 2020 , pp. 1-4
    [12] T. Shijo, K. Ogawa, F. Moritsuka, M. Suzuki, H. Ishihara,Y. Kanekiyo, K. Ogura, "85kHz Band 44kW Wireless Power Transfer System for Rapid Contactless Charging of Electric Bus"2016 Inter-national Symposium on Antennas and Propagation (ISAP), Japan, 2016, pp. 1-2
    [13] W. Zhou, K. Jin,"Optimal Photovoltaic Array Configuration Under Gaussian Laser Beam Condition for Wireless Power Transmission," IEEE Transactions on Power Electronics, vol.32, no.5, 2016, pp. 3662-3672
    [14] K. Jin, W. Zhou, "Wireless Laser Power Transmission:A Review of Recent Progress," IEEE Transactions on Power Electronics, vol.34, no.4, 2018, pp. 3842-3859
    [15] S. D. Jarvis, J. Mukherjee, M. Perren and S. J. Sweeney, “Devel-opment and Characterisation of Laser Power Converters for Optical Power Transfer Applications,” in IET Optoelectronics, vol. 8, no. 2, pp. 64- 70, April 2014.
    [16] K. Lee, J. Kim, C. Cha, "Microwave-based Wireless Power Transfer using Beam Scanning for Wireless Sensors, "IEEE EUROCON 2019 -18th International Conference on Smart Technologies, Novi Sad, 2019, pp. 1-5
    [17] W. C. Brown, “The Technology and Application of Free-Space Power Transmission by Microwave Beam,” in Proceedings of the IEEE, vol. 62, no. 1, pp. 11-25, January 1974
    [18] H. Matsumoto, “Research on Solar Power Satellites and Microwave Power Transmission in Japan,” in IEEE Microwave Magazine, vol. 3, no. 4, pp. 36-45, December 2002.
    [19] J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System With FPGA-Controlled Resonant Converter,” in IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3181- 3190, September 2010.
    [20] Y. H. Kim and K. H. Jin, “Design and Implementation of a Rec-tangular-Type Contactless Transformer,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, December 2011.
    [21] M. Ryu, H. Cha, Y. Park and J. Back, “Analysis of The Contactless Power Transfer System Using Modelling and Analysis of The Con-tactless Transformer,” Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, Raleigh, NC, 2005, pp. 7
    [22] D. Thenathayalan and J. H. Park, “Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, October 2015.
    [23] C. S. Wang, G. A. Covic and O. H. Stielau, “Power Transfer Capa-bility and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems,” in IEEE Transactions on Industrial Elec-tronics, vol. 51, no. 1, pp. 148-157, February 2004.
    [24] C. S. Wang, O. H. Stielau and G. A. Covic, “Design Considerations For a Contactless Electric Vehicle Battery Charger,” in IEEE Trans-actions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, October 2005.
    [25] E. Brenner and M. Javid, Analysis of Electric Eircuits. McGraw-Hill, 1967.
    [26] C. Fang, J. Song, L. Lin and Y. Wang, “Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application,” 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chong-qing, 2017, pp. 255-259.
    [27] Z. U. Zahid et al., “Modeling and Control of Series–Series Com-pensated Inductive Power Transfer System,” in IEEE Journal of 68 Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 111-123, March 2015.
    [28] R. Chen et al., “Analysis and Parameters Optimization of a Con-tactless IPT System for EV Charger,” Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, Fort Worth, TX, 2014, pp. 1654-1661.
    [29] C. Zheng et al., “High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
    [30] J. y. Lee, K. m. Yoo, B. S. Jung, B. s. Chae and J. K. Seo, “Large Air-Gap 6.6 Kw Wireless EV Charger with Self-Resonant PWM,” in Electronics Letters, vol. 50, no. 6, pp. 459-461, March 13 2014.
    [31] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, “Analysis and 69 Comparison of Secondary Series- and Parallel-Compensated Induc-tive Power Transfer Systems Operating for Optimal Efficiency and Load-Independent Voltage-Transfer Ratio,” in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2979-2990, June 2014.
    [32] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, “Load-Independent Duality of Current and Voltage Outputs of a Series- or Parallel-Compensated Inductive Power Transfer Converter With Optimized Efficiency,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 137-146, March 2015.
    [33] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Wiley, 1995.

    QR CODE