簡易檢索 / 詳目顯示

研究生: 張世璋
Shih-Chang Chang
論文名稱: 苯並咪唑鋰鹽之反應動力學研究探討與其電化學還原反應後之鈍性膜結構分析
The Study of The Reaction Kinetics of Benzimidazole-Based Lithium Salt and Characteristic Analysis of Solid Electrolyte Interphase after Electrochemical Reduction Reaction
指導教授: 王復民
Fu-Ming Wang
口試委員: 王丞浩
Chen-Hao Wang
楊純誠
Chun-Chen Yang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 187
中文關鍵詞: 苯並咪唑鈍性膜電化學石英晶體微天平核磁共振光譜
外文關鍵詞: Benzimidazole, SEI, EQCM, NMR
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對以苯並咪唑(Benzimidazole)為主體的化學結構並導入不同的官能基而成為鋰離子池的電解液鋰鹽添加劑。藉由電化學石英晶體微天平探討在不同陽極電極下的電化學反應動力學,與核磁共振光譜鑑定反應後產物(固態電解質界面膜(Solid Electrolyte Interface,SEI))的結構組成與可能的形成機制。
    由實驗結果顯示添加苯並咪唑鋰鹽確實影響了EC還原電位特別是LiBZ與LiMB,不僅在金電極的結果或是石墨電極的結果中皆顯示有提早進行還原反應的作用,其反應動力學的方式皆有很顯著的改變,另外LiTFB含有(-CF3)取代基能夠提高拉電子的能力,使電子雲密度集中不因氧化而導致結構開環,在過去研究中以及In-situ EQCM的實證,LiTFB會與碳酸酯類產生新型態的固態電解質界面膜。


    In this study, benzimidazole as the main body of the structure to research different functional groups as the electrolyte solution of lithium salt. The results were tested by electrochemical quartz crystal microbalance to investigate benzimidazole lithium salt additives in different electrodes electrochemical reaction kinetics and the formation mechanism of Solid Electrolyte Interface (SEI). The chemical composition of solid electrolyte interface film was identified by nuclear magnetic resonance spectroscopy.
    The results showed the addition of benzimidazole lithium salt did affect the EC reduction potential, especially in LiBZ and LiMB, not only in the results of the gold electrode but also the results of the graphite electrode showed the effects of the early reduction reaction. The reaction of kinetics changed significantly as well. In addition, LiTFB contains (-CF3) substituents improved the electron density of LiTFB. In the previous research and in-situ EQCM proved that the LiTFB and carbonates would produce novel forms of solid electrolytes.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 4 第二章 文獻回顧 5 2.1鋰離子電池原理與介紹 5 2.1.1陰極材料(Cathode materials) 9 2.1.2陽極材料(Anode materials) 11 2.1.3隔離膜(Separator) 13 2.1.4電解液(Electrolyte) 15 2.2鋰鹽與添加劑 18 2.2.1 LiPF6 18 2.2.2電解液添加劑 19 2.2.3苯並咪唑與咪唑 21 2.2.4鋰鹽穩定劑 26 2.3電化學石英晶體微天平應用於負極系統 30 2.4核磁共振光譜鑑定固態電解質介膜 32 2.4.1石墨電極(Graphite)固態電解質介膜 32 第三章 實驗方法與儀器設備 40 3.1實驗藥品 40 3.2儀器設備 42 3.3材料合成鑑定分析 44 3.3.1氣相層析質譜儀(GC-MS) 44 3.3.2核磁共振儀分析(NMR) 45 3.3.3石英晶體微天平(Quartz Crystal Microbalance) 46 3.3.4循環伏安法(Cyclic Voltammetry) 48 第四章 結果與討論 49 4.1 鋰鹽合成 49 4.1.1 Synthesis of Lithium benzimidazole salt 49 4.1.2 Synthesis of Lithium Trifluoromethyl benzimidazole 50 4.1.3 Synthesis of Lithium Methyl benzimidazole salt 51 4.1.4材料合成鑑定 52 4.2電化學石英晶體微天平實驗步驟 55 4.3 配置NMR tube 57 5.1電化學石英晶體微天平—探討金(Gold)電極系統 58 5.1.1 Blank在金電極中之反應動力學與化學組成 61 5.1.2 LiBZ鋰鹽添加劑在金電極的影響與化學組成 69 5.1.3 LiTFB鋰鹽添加劑在金電極的影響與化學組成 76 5.1.4 LiMB鋰鹽添加劑在金電極的影響與化學組成 84 5.1.5鋰鹽添加劑在金電極上的反應動力學 90 6.1電化學石英晶體微天平—探討石墨(Graphite)電極系統 92 6.1.1 Blank在石墨電極中之反應動力學與化學組成 92 6.1.2 LiBZ鋰鹽添加劑在石墨電極的影響與化學組成 100 6.1.3 LiTFB鋰鹽添加劑在石墨電極的影響與化學組成 108 6.1.4 LiMB鋰鹽添加劑在石墨電極的影響與化學組成 116 6.1.5 鋰鹽添加劑在石墨電極的反應動力學 124 7.1電化學石英晶體微天平—探討矽(Silicon)電極系統 127 7.1.1 Blank在矽電極中之反應動力學與化學組成 128 7.1.2 LiBZ在矽電極中之反應動力學與化學組成 136 7.1.3 LiTFB在矽電極中之反應動力學與化學組成 143 7.1.4 LiMB在矽電極中之反應動力學與化學組成 150 7.1.5鋰鹽添加劑在矽電極的反應動力學 157 第五章 結論 160 5.1 金電極之反應動力學與化學組成 160 5.2 石墨電極之反應動力學與化學組成 162 5.3 矽電極之反應動力學與化學組成 163 5.4 總結 165 參考資料 166

    [1] K.Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chem. Rev., vol. 104, no. September, p. 4303, 2004.
    [2] J.-M.Tarascon andM.Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, Nov.2001.
    [3] S. A.Pradanawati, F.-M.Wang, andJ.Rick, “In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries,” Electrochim. Acta, vol. 135, pp. 388–395, 2014.
    [4] I.Yoshimatsu, “Lithium Electrode Morphology during Cycling in Lithium Cells,” J. Electrochem. Soc., vol. 135, no. 10, p. 2422, 1988.
    [5] J. R. D.Rosamaría Fong, Ulrich von Sacken, “Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells,” J. Electrochem. Soc., vol. 137, no. 7, pp. 2009–2013, 1990.
    [6]G. S. and D. A.Vinodkumar Etacheri, Rotem Marom, Ran Elazari, “Challenges in the development of advanced Li-ion batteries: a review,” Int. J. Electrochem. Sci., vol. 6, no. 7, pp. 2581–2595, 2011.
    [7] J. B.Goodenough andK.Park, “The Li-ion Rechargeable Battery : A Perspective The Li-ion Rechargeable Battery : A Perspective,” 2013.
    [8] H. D.Yoo, E.Markevich, G.Salitra, D.Sharon, andD.Aurbach, “On the challenge of developing advanced technologies for electrochemical energy storage and conversion,” Mater. Today, vol. 17, no. 3, pp. 110–121, 2014.
    [9] D.Belov andM. H.Yang, “Failure mechanism of Li-ion battery at overcharge conditions,” J. Solid State Electrochem., vol. 12, no. 7–8, pp. 885–894, 2008.
    [10]T.Ohzuku, A.Ueda, M.Nagayama, Y.Iwakoshi, andH.Komori, “Comparative-Study of LiCoO2 LiNi1/2Co1/2O2 and LiNiO2for 4-Volt Secondary Lithium Cells,” Electrochim. Acta, vol. 38, no. 9, pp. 1159–1167, 1993.
    [11]R. J.Gummow, A.deKock, andM. M.Thackeray, “Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells,” Solid State Ionics, vol. 69, no. 1, pp. 59–67, 1994.
    [12]A. K. Padh and J. B. G.A. k. Padhi , K. S. Nanjundaswamy, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” vol. 144, no. 4, pp. 1–7, 1997.
    [13]S.Hy, F.Felix, J.Rick, W. N.Su, andB. J.Hwang, “Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤0.5),” J. Am. Chem. Soc., 2014.
    [14]C. S.Johnson, J. S.Kim, C.Lefief, N.Li, J. T.Vaughey, andM. M.Thackeray, “The significance of the Li2MnO3 component in composite xLi2MnO3 (1 -x)LiMn0.5Ni0.5O2 electrodes,” Electrochem. commun., vol. 6, no. 10, pp. 1085–1091, 2004.
    [15]林佑彥, 由花生殼製備鋰離子電池高電容量負極碳材料. 國立中央大學化學工程與材料工程研究所碩士論文, 2003.
    [16]Baohua Li, R.G., Kaixi Li, Chunxiang Lu, Licheng Ling, Electrochemical properties of MCMBs as anode for lithium ion battery, Fuel Chemistry Division Preprints, 47 (2002) 187.
    [17]S. S.Zhang, “A review on electrolyte additives for lithium-ion batteries,” J. Power Sources, vol. 162, no. 2, pp. 1379–1394, 2006.
    [18] P. T.Applications, C. A.Air, A. M.Drug, andC.Pp, “Battery separators,” pp. 2–3, 2016.
    [19]黃可龍;王兆翔;劉素琴,馬振基 鋰離子電池原理與技術. 2010
    [20]呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011.
    [21]V. A.Agubra andJ. W.Fergus, “The formation and stability of the solid electrolyte interface on the graphite anode,” J. Power Sources, vol. 268, pp. 153–162, 2014.
    [22]J.Barthel, “A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes,” J. Electrochem. Soc., vol. 144, no. 11, p. 3866, 1997.
    [23]J.Scheers, P.Johansson, P.Szczeci ski, W.Wieczorek, M.Armand, andP.Jacobsson, “Benzimidazole and imidazole lithium salts for battery electrolytes,” J. Power Sources, vol. 195, no. 18, pp. 6081–6087, 2010.
    [24]T.Trzeciak, L.Niedzicki, G.Groszek, P.Wieczorek, M.Marcinek, andW.Wieczorek, “New trivalent imidazole-derived salt for lithium-ion cell electrolyte,” J. Power Sources, vol. 252, pp. 229–234, 2014.
    [25]鄭錦淑;王復民, 鋰離子電池添加劑之發展. 化工, 58 (2011)
    [26]E.Peled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model,” J. Electrochem. Soc., vol. 126, no. 12, p. 2047, 1979.
    [27]J. C.Burns et al., “Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance,” J. Electrochem. Soc., vol. 160, no. 10, pp. A1668–A1674, 2013.
    [28]D.Aurbach, K.Gamolsky, B.Markovsky, Y.Gofer, M.Schmidt, andU.Heider, “On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries,” Electrochim. Acta, vol. 47, no. 9, pp. 1423–1439, 2002.
    [29] W.Li, A.Xiao, B. L.Lucht, M. C.Smart, andB.V.Ratnakumar, “Surface Analysis of Electrodes from Cells Containing Electrolytes with Stabilizing Additives Exposed to High Temperature,” J. Electrochem. Soc., vol. 155, no. 9, p. A648, 2008.
    [30]Y.Ein-Eli, “The Role of SO[sub 2] as an Additive to Organic Li-Ion Battery Electrolytes,” J. Electrochem. Soc., vol. 144, no. 4, p. 1159, 1997.
    [31]C.Wang, H.Nakamura, H.Komatsu, M.Yoshio, andH.Yoshitake, “Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system,” J. Power Sources, vol. 74, no. 1, pp. 142–145, 1998.
    [32]J.Liu, Z.Chen, S.Busking, andK.Amine, “Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries,” Electrochem. commun., vol. 9, no. 3, pp. 475–479, 2007.
    [33]S. S.Zhang, K.Xu, andT. R.Jow, “LiBOB-based gel electrolyte Li-ion battery for high temperature operation,” J. Power Sources, vol. 154, no. 1, pp. 276–280, 2006.
    [34]E. Wang, et al., Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells, Journal of The Electrochemical Society, 147 (2000) 4023.
    [35]M. Y. Saidi, F. Gao, J. Barker, Scordilis-Kelley C, Additive to stabilize electrochemical cell, United States Patent, 5846673 (1998).
    [36]Z. Chen, et al., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries, Electrochimica Acta, 51 (2006) 3322.
    [37]M. Ishikawa, M. Morita, and Y. Matsuda, In situ scanning vibrating electrode technique for lithium metal anodes, Journal of Power Sources, 68 (1997) 501.
    [38]R. D. Rauh and S.B. Brummer, The effect of additives on lithium cycling in propylene carbonate, Electrochimica Acta, 22 (1997) 75.
    [39]T. Hirai, I. Yoshimatsu, and J. I. Yamaki, Effect of Additives on Lithium Cycling Efficiency, Journal of The Electrochemical Society,141 (1994) 2300.
    [40]E. Eweka, J. R. Owen, and A. Ritchie, Electrolytes and additives for high efficiency lithium cycling, Journal of Power Sources, 65 (1997) 247.
    [41]張千玉;高晶;劉銳;馬曉華, 鋰離子電池過充保護添加劑的進展, Battery Bimonthly, 39 (2009).
    [42]L. M. Moshurchak, C. Buhrmester, and J. R. Dahn, Spectroelectrochemical Studies of Redox Shuttle Overcharge Additive for LiFePO4-Based Li-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A1279.
    [43]J. R. Dahn, et al., High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene, Journal of The Electrochemical Society, 152 (2005) A1283.
    [44]K. Abe, et al., Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance, Journal of Power Sources, 153 (2006) 328.
    [45]H. Lee, et al., Co-Use of Cyclohexyl Benzene and Biphenyl for Overcharge Protection of Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 9 (2006) A307.
    [46] Z. Y. Tang, Y. B. He, Q. S. Zhu, electrochemistry, 12 (2006) 383.
    [47]H. F. Xiang, et al., Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries, Journal of Power Sources, 174 (2007) 335.
    [48]M. D.Levi, N.Shpigel, S.Sigalov, V.Dargel, L.Daikhin, and D.Aurbach, “In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review,” Electrochim. Acta, vol. 232, pp. 271–284, 2017
    [49]J. M.Griffin, A. C.Forse, W.-Y.Tsai, P.-L.Taberna, P.Simon, andC. P.Grey, “In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors,” Nat. Mater., vol. 14, no. 8, pp. 812–819, 2015.
    [50]Song, S.-W.; Baek, S.-W. Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization. Electrochim. Acta 2009, 54, 1312−1318.
    [51]Li, J.; Chen, S.-R.; Fan, X.-Y.; Huang, L.; Sun, S.-G. Studies of
    the Interfacial Properties of an Electroplated Sn Thin Film Electrode/ Electrolyte Using in Situ MFTIRS and EQCM. Langmuir 2007, 23, 13174−13180.
    [52]Z.Yang, M. C.Dixon, R. A.Erck, andL.Trahey, “Quantification of the mass and viscoelasticity of interfacial films on tin anodes using EQCM-D,” ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26585–26594, 2015.
    [53]G.V.Zhuang, K.Xu, H.Yang, T. R.Jow, andP. N.Ross, “Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF 6/EC:EMC electrolyte,” J. Phys. Chem. B, vol. 109, no. 37, pp. 17567–17573, 2005.
    [54]P.Verma, P.Maire, andP.Nov??k, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries,” Electrochim. Acta, vol. 55, no. 22, pp. 6332–6341, 2010.
    [55]M.Nie, D.Chalasani, D. P.Abraham, Y.Chen, A.Bose, andB. L.Lucht, “Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy,” J. Phys. Chem. C, vol. 117, no. 3, pp. 1257–1267, 2013.
    [56]G.Sauerbrey, “Verwendung von Schwingquarzen zur W{ä}gung d{ü}nner Schichten und zur Mikrow{ä}gung,” Zeitschrift f{ü}r Phys., vol. 155, no. 2, pp. 206–222, 1959.
    [57]X.Song et al., “In-situ mass-electrochemical study of surface redox potential and interfacial chemical reactions of Li(Na)FePO 4 nanocrystals for Li(Na)-ion batteries,” Nano Energy, vol. 37, no. February, pp. 90–97, 2017.
    [58]Z. Xu, C.K. Park, Z. W. Zhang, and C. Chul, Organic lithium salt electrolytes having enhanced safety for rechargeable batteries and methods of making the same, US7534527B2 (2009).
    [59]J. W.Fergus, “Recent developments in cathode materials for lithium ion batteries,” J. Power Sources, vol. 195, no. 4, pp. 939–954, 2010.
    [60]J.Vatamanu, O.Borodin, andG. D.Smith, “Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF6 Electrolyte near Graphite Surface as a Function of Electrode Potential,” J. Phys. Chem. C, vol. 116, no. 1, pp. 1114–1121, 2011.
    [61]F.Wang, M.Yu, Y.Hsiao, Y.Tsai, B.Hwang, andY.Wang, “Aging Effects to Solid Electrolyte Interface ( SEI ) Membrane Formation and the Performance Analysis of Lithium Ion Batteries,” Int. J. Mol. Sci., vol. 6, pp. 1014–1026, 2011.
    [62]F. M.Wang, D. T.Shieh, J. H.Cheng, andC. R.Yang, “An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries,” Solid State Ionics, vol. 180, no. 40, pp. 1660–1666, Jan.2010.
    [63]S. A.Pradanawati, F.-M.Wang, andC.-H.Su, “Using electrochemical surface plasmon resonance for in-situ kinetic investigations of solid electrolyte interphase formation in lithium ion battery,” J. Power Sources, vol. 330, pp. 127–131, 2016.
    [64]F.-M.Wang et al., “Robust Benzimidazole-Based Electrolyte Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion Batteries,” Chem. Mater., p. acs.chemmater.7b00824, 2017.
    [65]C. J.Patridge, C. T.Love, andD. E.Ramaker, “Utilization of heavy alkali dopants as a beacon to study the cathode electrolyte decomposition layer in lithium-ion batteries,” Ionics (Kiel)., vol. 22, no. 1, pp. 51–62, 2016.
    [66]Z.Zeng, W.-I.Liang, Y.-H.Chu, andH.Zheng, “In situ TEM study of the Li–Au reaction in an electrochemical liquid cell,” Faraday Discuss., vol. 176, pp. 95–107, 2014.

    無法下載圖示 全文公開日期 2022/08/28 (校內網路)
    全文公開日期 2027/08/28 (校外網路)
    全文公開日期 2027/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE