簡易檢索 / 詳目顯示

研究生: 王煦博
Hsu-Po Wang
論文名稱: 台灣條件式均值反應譜之發展與應用
Development and Application of Conditional Mean Spectra in Taiwan
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 黃震興
Jenn-Shin Hwang
黃尹男
Yin-Nan Huang
張毓文
Yu-Wen Chang
游忠翰
Chung-Han Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 221
中文關鍵詞: 條件式均值反應譜建築物耐震設計規範及解說ASCE/SEI 7-16非線性動力歷時分析
外文關鍵詞: conditional mean spectrum, uniform hazard spectrum, ground motion selection, nonlinear dynamic response history analysis, seismic isolation design
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於目前業界實務上所使用的均布危害度反應譜(UHS, Uniform Hazard Spectrum),是由不同週期之危害度曲線識別出對應於某一特定年超越機率下之譜加速度反應譜值所相連而成的反應譜,由於各週期之UHS反應譜譜值均來自不同地震規模與距離的貢獻,因此其譜型較缺乏真實性,若用於作為篩選地震歷時之目標反應譜,所篩選出之地震歷時將過於保守,進而影響後續的結構分析。
    針對以上之情況,本研究利用台灣地震資料庫發展出一套適用於台灣的規模相依之譜加速度相關係數模型,用於建置台灣條件式均值反應譜(CMS, Conditional Mean Spectrum)作為目標反應譜進行地震歷時篩選,以改善UHS於目標週期外反應譜譜值過於保守之問題,也較符合台灣地震的真實情況。同時以台灣建築物耐震設計規範與美國規範ASCE 7-16對於輸入地震之不同的要求,作為篩選地震歷時組之不同條件,篩選出三個不同的地震歷時組進行單自由度系統與實際隔震案例的非線性動力歷時分析,並對分析之結果進行比較與討論。
    本研究也提出了一考量地震事件之多元性的地震歷時篩選程序,該程序可確保所篩選之地震歷時組並不會被單一地震事件所主導,進而考量不同地震事件的震源特性以及場址條件。同時該篩選程序也可根據使用者建立篩選之限制條件與目標反應譜,篩選出符合使用者需求之地震歷時群組。


    Nonlinear dynamic response history analysis is requested in the Taiwan seismic design code for buildings. The uniform hazard spectrum (UHS) determined by probabilistic seismic hazard analysis is commonly adopted as the target response spectrum for selecting input ground motions. However, doing so is not a quite reasonable approach, since the spectral response at the period of interest for some selected ground motions may be overestimated. Adopting the conditional mean spectrum (CMS) is an alternative way to determine the target response spectrum for selecting input ground motions, which is also recommended in ASCE/SEI 7-16. The concept is to provide an expected response spectrum with conditioned on a design spectral acceleration value at the period of interest. Therefore, this study aims to propose a complete tool for selecting input ground motions based on CMS or UHS. First, the magnitude-dependent correlation coefficient model based on the Taiwan ground motion database is developed through performing sensitivity analysis. The CMS determined using the model can effectively reflect the characteristics of ground motions recorded in Taiwan. Then, a ground motion selection program based on the greedy algorithm is developed. Note that three ground motions, at most, selected from a single earthquake event is an additional criterion for considering diversity of the selected ground motions. Lastly, the requirements for ground motion selection specified in Taiwan seismic design code for buildings and ASCE/SEI 7-16 are considered for numerically examining the nonlinear dynamic responses of single-degree-of-freedom systems with different isolation periods and a practical isolated building with different combinations of ground motion inputs. The numerical results demonstrate that adopting CMS is indeed a more reasonable approach for selecting input ground motions. In addition, the requirement for ground motion selection specified in Taiwan seismic design Code for buildings may be slightly stricter than that in ASCE7-16.

    摘要 I ABSTRACT III 誌謝 V 目次 VII 表次 XI 圖次 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 條件式均值反應譜 4 2.1.1 地震動強度參數 5 2.1.2 反應譜不同週期間之相關係數 6 2.1.3 條件式均值反應譜建置程序 9 2.2 基於單一週期的地震動振幅縮放 10 2.3 非線性動力歷時分析所需歷時篩選規範 11 2.3.1 美國規範ASCE 7-16 - 地震動篩選 11 2.3.2 美國規範ASCE 7-16 - 縮放的週期範圍 12 2.3.3 美國規範ASCE 7-16 - 振幅縮放 12 2.3.4 台灣建築物耐震設計規範輸入地震要求 13 第三章 台灣條件式均值反應譜建置 21 3.1 台灣分析用地震歷時資料庫建立 21 3.2 台灣譜加速度相關係數模型之發展 22 3.2.1 台灣地震動特性與美國相關係數模型之比較 22 3.2.2 台灣地震動評估模型 24 3.2.3 考量震矩規模對於譜加速度相關係數模型之影響 27 3.2.4 考量距斷層最短距離對於譜加速度相關係數模型之影響 29 3.2.5 考量斷層機制對於譜加速度相關係數模型之影響 30 3.2.6 考量工址地表面下30公尺內之土層平均剪力波速對於譜加速度相關係數模型之影響 30 3.2.7 小結 31 3.3 規模相依之台灣譜加速度相關係數模型建立 32 第四章 地震歷時篩選程序建立 60 4.1 地震歷時篩選之限制 60 4.2 譜加速度反應譜參數RotD50及RotI50 61 4.3 地震歷時篩選程序建立 63 4.3.1 貪婪演算法 63 4.3.2 地震歷時篩選程序之應用 64 4.3.3 權重係數w 67 第五章 非線性動力歷時案例探討 - 單自由度結構反應分析 72 5.1 花蓮慈濟醫院合心樓樓房結構及隔震系統參數設定 72 5.1.1 樓房結構 72 5.1.2 建築物隔震層之隔震器裝設位置 73 5.1.3 隔震系統參數設定 74 5.2 分析之地震歷時篩選 75 5.2.1 地震危害之控制震源 76 5.2.2 目標反應譜設定 77 5.2.3 單自由度之地震歷時縮放及篩選 79 5.3 單自由度系統結構反應比較 81 5.3.1 單自由度系統之非線性動力歷時分析 81 5.3.2 單自由度系統之隔震位移比較與檢核 82 5.4 單自由度系統分析結果討論 84 第六章 非線性動力歷時案例探討 - 實際隔震案例結構反應分析 144 6.1 花蓮慈濟醫院合心樓隔震系統參數設定 144 6.2 目標反應譜設定 146 6.2.1 地震歷時組篩選分類結果 146 6.3 非線性動力歷時分析 147 6.3.1 雙向輸入(輸入方法A)之分析結果 148 6.3.2 雙向輸入(輸入方法B)之分析結果 150 6.3.3 單向輸入(輸入方法C)之分析結果 151 6.4 結構反應比較及討論 152 第七章 結論與未來展望 187 7.1 結論 187 7.2 未來展望 189 參考文獻 190 附錄A. 不同規模區間週期之譜加速度相關係數表 194 附錄B. 不同權重係數w篩選之地震歷時組平均值及對數標準差與目標反應譜的差異 198

    【1】 內政部營建署,“ 建築物耐震設計規範及解說 ”,臺北,2005。
    【2】 Baker, J. W., and Cornell, C. A. (2006a). “ Correlation of response spectral values for multicomponent ground motions. ” Bull. Seismol. Soc. Am., 96(1), 215-227.
    【3】 Baker, J. W., and Cornell, C. A. (2005a). “ A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. ” Earthquake Engng Struct. Dyn., 34(10), 1193–1217.
    【4】 American Society of Civil Engineers (ASCE). (2017). “ Minimum design loads and associated criteria for buildings and other structures ”, ASCE/SEI 7-16, American Society of Civil Engineers, Reston, Virginia.
    【5】 Baker, J. W., Shahi, S. K., and Jayaram, N. (2011). “ New ground motion selection procedures and selected motions for the PEER transportation research program. ” PEER Technical Report 2011/03, Berkeley, CA.
    【6】 Baker, J. W. (2011). “ Conditional mean spectrum: Tool for ground motion selection. ” Journal of Structural Engineering, 137(3), 322-331.
    【7】 Abrahamson, N. A., and Silva, W. J. (1997). “ Empirical response spectral attenuation relations for shallow crustal earthquakes. ” Seismological Research Letters, 68(1), 94-126.
    【8】 Chao S-H, Chiou B, Hsu C-C, Lin P-S (2020). “ A horizontal ground-motion model for crustal and subduction earthquakes in Taiwan. ” Earthquake Spectra, 36(2), 463–506.
    【9】 Kutner, M.H., Nachtsheim, C., and Neter, J. (2004). “ Applied Linear Regression Models. ” MacGraw-Hill/Irwin, New York, 701 pp.
    【10】 Baker, J. W., and Jayaram, N. (2008). “ Correlation of spectral acceleration values from NGA ground motion models. ” Earthquake Spectra, 24(1), 299-317.
    【11】 Shome, N., Cornell, C. A., Bazzurro, P., and Carballo, J. E. (1998). “ Earthquakes, records and nonlinear responses. ” Earthquake Spectra, 14(3), 469–500.9mj.
    【12】 Kuo, C.H., Lin, C.M., Chang, S.C., Wen, K.L. and Hsieh, H.H. (2017). “ Site Database for Taiwan Strong Motion Stations. ” NCREE Report, No.NCREE-17-004, National Center for Research on Earthquake Engineering, Taipei, Taiwan.
    【13】 Chiou, B. S.-J. , and Youngs, R. R. (2014). “ Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. ” Earthquake Spectra, 30, 1117–1153.
    【14】 Boore, D. M. (2010). “ Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion. ” Bulletin of the Seismological Society of America, 100(4), 1830-1835.
    【15】 Azarbakht, A., Mousavi, M., Nourizadeh, M., Shahri, M. (2014). “ Dependence of correlations between spectral accelerations at multiple periods on magnitude and distance. ” Earthquake Engineering and Structural Dynamics, 43, 1193-1204.
    【16】 Baker, J. W., and Cornell, C. A. (2006b). “ Spectral shape, epsilon and record selection. ” Earthquake Engng Struct. Dyn., 35(9), 1077–1095.
    【17】 Baker, J. W. (2007). “ Correlation of ground motion intensity parameters used for predicting structural and geotechnical response. ” 10th International Conference on Applications of Statistics and Probability in Civil Engineering, Tokyo, Japan.
    【18】 Baker, J. W. (2015). “ Introduction to Probabilistic Seismic Hazard Analysis. ” White Paper Version 2.1, pp. 77.
    【19】 Boore, D. M., Watson-Lamprey, J., and Abrahamson, N. A. (2006). “ GMRotD and GMRotI: orientation-independent measures of ground motion. ” Bulletin of the Seismological Society of America, 96, 1502-1511.
    【20】 Carlton, B., and Abrahamson, N. (2014). “ Issues and approaches for implementing conditional mean spectra in practice. ” Bulletin of the Seismological Society of America, 104(1), 503-512.
    【21】 Daneshvar, P., Bouaanani, N. and Godia, A. (2015). “ On computation of conditional mean spectrum in eastern Canada. ” Journal of Seismology, 19, 443-467.
    【22】 Jayaram, N., Baker, J. W., Okano, H., Ishida, H., McCann, M. W., and Mihara, Y. (2011). “ Correlation of response spectral values in Japanese ground motions. ” Earthquakes and Structures, 2(4), 357-376.
    【23】 Jayaram, N., Lin, T., and Baker, J. W. (2011). “ A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. ” Earthquake Spectra, 27 (3) (2011), pp. 797-815.
    【24】 Jayarajan, P. (2020). “ Application of Conditional Mean Spectrum in the Seismic Assessment of a Braced Frame Steel Structure. ” IOP Conference Series: Materials Science and Engineering, Volume 936, Issue 1, pp. 012030.
    【25】 Ji, K., Bouaanani, N., Wen, R. and Ren, Y. (2017). “ Correlation of spectral accelerations for earthquakes in China. ” Bulletin of Seismological Society of America, 107(3), 1213-1226.
    【26】 K. Khy, C. Chintanapakdee, and A. C. Wijeyewickrema (2019). , “ Application of conditional mean spectrum in nonlinear response history analysis of tall buildings on soft soil. ” Eng. J., vol. 23, no. 1, pp.135–150.
    【27】 陳宏銘、黃尹男 (2014),“地表加速度反應譜譜形對核能電廠風險評估之影響” ,國立臺灣大學工學院土木工程學系(碩士論文)。
    【28】 楊甯凱、黃尹男 (2021),“考慮近斷層脈衝影響之隔震設計-以臺北盆地為例” ,國立臺灣大學工學院土木工程學系(碩士論文)。
    【29】 盧煉元、王亮偉、陳慶輝、李官峰、李姿瑩、蔡諄昶,“以性能為導向之二階段隔震設計法”, 結構工程 第三十一卷 第三期 第33-61 頁,民國105年9月。

    QR CODE