簡易檢索 / 詳目顯示

研究生: 林文柏
Wen-Po Lin
論文名稱: 以脊骨模型檢討地震歷時PGA、PGV與鋼筋混凝土結構層間變形之相關性
Investigation on the Correlation between PGA/PGV of Earthquake Time-History and Story Drift of an RC Structure Using the Spine Model
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 邱聰智
鄭敏元
廖文義
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 82
中文關鍵詞: 非線性動力歷時分析鋼筋混凝土PGAPGV脊骨簡化模型等效線性法層間變形
外文關鍵詞: Non-linear Dynamic Time-history Analysis, Reinforced Concrete, PGA, PGV, Spine Model, Modal Equivalent Linearization Method, Inter-Story Drift
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中央氣象局公布的地震震度新制中,為了使震度與建物災損程度之間的相關性增加,當震度達五級以上(含),分級原則將由原本的最大地動加速度(PGA)改為以最大地動速度(PGV)分級;而結構耐震設計仍是以加速度作為設計依據;要確認結構物是否能滿足PGV震度,目前普遍的做法為採用非線性動力歷時分析。惟非線性動力歷時分析目前常遇到的問題為分析時間太長,需耗費許多時間等待程式進行分析,且分析檔案容量太大等等問題。
    本研究選用兩筆新建鋼筋混凝土建築案例,利用Etabs2019軟體建置完整與脊骨簡化模型,藉由與完整模型的分析結果比較(包含模態比較與層間變形比較),觀察脊骨簡化模型於非線性動力歷時分析之可行性與可靠度,另外利用等效線性法(MELM)判斷屋頂最大位移的準確性。
    透過證實脊骨模型可一定程度的反應出完整模型於非線性歷時分析的層間變形曲線,加上簡化模型快速分析的優勢,希望可以讓工程師將脊骨模型作為非線性歷時分析快速初評的工具。
    另外在475年回歸期設計地震力對應的震度範圍中,不論是採用PGA震度或者PGV震度進行分析,本研究的兩組新建案例最大層間變形皆小於規定要求的2.5%,故推斷對於符合目前設計規範之新建鋼筋混凝土結構物,可同時滿足新制PGV震度下的性能強度。


    In the seismic intensity scale introduced by the Central Weather Bureau, to enhance the correlation between seismic intensity and the level of disaster, the classification principle for seismic intensities of magnitude 5 and above has shifted from the previous use of Peak Ground Acceleration (PGA) to Maximum Ground Velocity (PGV). However, seismic design for structural resilience still relies on acceleration as the basis for design criteria. Presently, the widely accepted conversion method between PGA and PGV involves employing non-linear dynamic time-history analysis. Nevertheless, a prevalent issue with non-linear dynamic time-history analysis is the extensive time required for analysis, as well as the large file sizes associated with the analysis process.
    This study selected two newly constructed reinforced concrete building cases and utilized the Etabs2019 software to establish both a complete and a simplified spine model. By comparing the analysis results with the complete model (including modal comparison and inter-story drift comparison), the feasibility and reliability of the simplified spine model in nonlinear dynamic time-history analysis were observed. Additionally, the accuracy of determining the maximum roof displacement using the Modal Equivalent Linearization Method (MELM) was examined.
    Through validating that the spine model can to some extent reflect the inter-story drift curves of the complete model in nonlinear time-history analysis, combined with the advantages of rapid analysis in the simplified model, it is hoped that engineers can consider the spine model as one of the tools for a quick preliminary assessment in nonlinear time-history analysis.
    Furthermore, within the seismic intensity range corresponding to the 475-year return period design earthquake forces, whether using PGA intensity or PGV intensity for analysis, the maximum inter-story deformation in both sets of new construction cases in this study is less than the specified requirement of 2.5%. Therefore, it is inferred that for newly designed reinforced concrete structures complying with current design codes, they can simultaneously meet the performance requirements under the new PGV intensity.

    致謝 I 摘要 II Abstract III 目錄 V 表索引 VIII 圖索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與構架 3 第二章 文獻回顧 5 2.1 非線性動力歷時分析 5 2.2 TEASDA 塑鉸設定 6 2.2.1 RC柱之非線性鉸設定 6 2.2.2 RC梁之非線性鉸設定 9 2.3 魚骨模型 11 2.3.1 魚骨模型 11 2.3.2 改良式魚骨模型 12 2.3.3 一致性魚骨模型 14 2.4 簡化脊骨模型 15 2.4.1 理論背景 15 2.4.2 脊骨模型參數 17 2.5 等效線性法(MELM) 18 2.6 常見規範與研究對於意外扭矩放大係數相關規定 20 第三章 研究方法與說明 22 3.1 模型建立 22 3.1.1 完整模型建置 22 3.1.2 脊骨簡化模型 23 3.2 地震歷時挑選原則 25 3.3 非線性動力歷時分析最大層間變形規定 26 3.4 等效線性法之運用 26 第四章 案例分析設定 28 4.1 模型參數設定 29 4.1.1分析案例之選用 29 4.1.2 兩案例結構尺寸 32 4.1.3 彈簧設定 33 4.1.4 脊骨簡化模型柱位選定原則 33 4.1.5 載重設定 35 4.1.6 塑鉸設定 35 4.2 地震歷時挑選 37 4.2.1 完整模型與脊骨簡化模型七筆地震歷時挑選 37 4.2.2 脊骨簡化模型多筆地震歷時挑選 38 第五章 案例分析結果與比較 42 5.1 完整模型與脊骨模型分析結果與比較 42 5.1.1 結構彈性分析結果比較 42 5.1.2 結構非線性動力歷時分析比較 46 5.1.3 等效線性法計算屋頂位移 56 5.1.4 小結 57 5.2 以脊骨模型進行多筆歷時分析 58 5.2.1 檢核台南仁德案原設計簡化模型層間變位 59 5.2.2 檢核台北景美案原設計簡化模型層間變位 65 5.2.3 小結 74 第六章 結論與建議 75 6.1 結論 75 6.2 建議 78 參考文獻 79 附錄A 脊骨模型建立步驟

    參考文獻
    [1] 蕭輔沛、蔡仁傑、翁樸文、沈文成、徐侑呈、周德光、翁元滔、簡文郁、林佳蓁、劉勛仁,「臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊(TEASDA 1.0)」,國家地震工程研究中心報告,NCREE-21-001,台北(2021)。
    [2] 邱聰智,鍾立來,涂耀賢,賴昱志,曾建創,翁樸文,莊明介,葉勇凱,李其航,林敏郎,王佳憲,沈文成,蕭輔沛,薛強,黃世建,「臺灣結構耐震評估側推分析法(TEASPA V4.0)」,國家地震工程研究中心,NCREE-20-005,臺北,2020。
    [3] 鄭元良、宋裕祺、廖慧明、邱昌平、蔡江洋、陶其駿,「高強度鋼筋混凝土應用在超高樓層建築物之耐震性能探討」,內政部建築研究所研究報告 (2011)。
    [4] 宋裕祺、蘇進國、吳傳威、蔡益超,「以結構性能為基準之鋼筋混凝土建築物耐震能力評估」,中華民國建築學會「建築學報」,第50 期(2004)。
    [5] Juan C. Reyes, Anil K. Chopra, “Three-dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings” Earthquake Engineering & Structural Dynamics, 40(7), pp.789-806 (2011). DOI: 10.1002/ eqe.1060
    [6] Maja Kreslin, Peter Fajfar, “A practice-oriented method for nonlinear seismic analysis of building structures”, The Second International Conference on Earthquake Engineering and Disaster Mitigation, Surabaya, Indonesia, 19-20, pp.101-112 (2011)
    [7] Maja Kreslin, Peter Fajfar, “ Seismic evaluation of an existing complex RC building”, Bull Earthquake Engineering, 8, pp.363-385 (2010). DOI 10.1007/s10518-009-9155-0
    [8] AIJ. 2004. Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings (Draft), Architectural Institute of Japan, Tokyo, Japan.
    [9] 松森泰造, “鉄筋コンクリート構造物の地震最大応答に関する研究”, The University of Tokyo, (2003).
    [10] Masayoshi Nakashima, Koji Ogawa, Kazuo Inoue, “Generic frame model for simulation of earthquake responses of steel moment frames”, Earthquake Engineering & Structural Dynamics, 31, pp.671-692 (2002). DOI: 10.1002/eqe.148
    [11] Nicolas Luco, Yasuhiro Mori, Yosuke Funahashi, C. Allin Cornell1, Masayoshi Nakashima, “Evaluation of predictors of non-linear seismic demands using ‘fishbone’ models of SMRF buildings”, Earthquake Engineering & Structural Dynamics, 32, pp.2267-2288 (2003). DOI: 10.1002/eqe.331
    [12] A.R. Khaloo, H. Khosravi, “Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames”, Soil Dynamics and Earthquake Engineering, 55,pp.195-210 (2013).
    [13] 內政部營建署,建築物耐震設計規範及解說,(2022)。
    [14] 李正龍、邱建國,脊骨模型於鋼筋混凝土建築物動力行為分析之可行性研究,(2014)。
    [15] Chien-Kuo Chiu, Lorddy Zefanya Nugroho, Sukrisna Gautama & Fu-Pei Hsiao,Reliability-based constant-damage ductility demand spectra of mid-rise RC building structures using modified equivalent linearization method,(2019)。
    [16] Chien-Kuo Chiu, Lorddy Z. Nugroho,Wen-I. Liao,Estimation of Seismic Damage Induced by Near- and Far-Fault Earthquakes Using Modified Equivalent Linearization Method of Mid-Rise RC Buildings,(2020)。
    [17] Mojtaba Hosseini, Hossein Ahmadie Amiri, Homayoon Esmailpur Estekanchi, Mohammad Kheirkhah Gildeh,“Development of consistent fish-bone simplified model with energy-based
    approach for efficient seismic evaluation of irregular steel moment
    resisting frames”,(2022)。
    [18] 劉勛仁、呂學敏、簡文郁,「臺灣工址輸入地震查選平台」,110年度國家地震工程研究中心成果報告,(2022)。
    [19] 劉勛仁、簡文郁、張郁文,「臺灣工址受震反應分析用實測地震資料庫」,109年度國家地震工程研究中心成果報告,(2021)。
    [20] Eurocode 8: Draft No 5 (May 2002) Design of Structures for Earthquake Resistance. Part1: General Rules, Seismic Actions and Rules for Buildings. PREH1998-1, Commission of the European Communities, European Committee for Standardization.
    [21] UBC (1997). "Uniform Building Code" International Conference of Building Officials, Volumn2, Whittier, CA.
    [22] 王韋竣、林瑞良、蔡克銓,「受震建築意外扭矩放大係數之可靠度評估」,國家地震工程研究中心,NCREE-2014-013F,(2014)。
    [23] 黃百誼、賴晉達、趙書賢、吳紀弘、葉士瑋,「新制震度分級方法於耐震測試驗證規格之影響」,國家地震工程研究中心簡訊,202106 (118期)。

    QR CODE