簡易檢索 / 詳目顯示

研究生: 黃瑋修
Wei-Hsiu Huang
論文名稱: 高樓層房屋結構受近斷層地震之反應研究(Ⅲ)
Responses of High-Rise Buildings to Near-Fault Ground Motions (Ⅲ)
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 黃尹男
Yin-Nan Huang
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 151
中文關鍵詞: 近斷層地震高樓層結構反應速度脈衝PISA 3D非線性動力歷時分析阻尼常數分配
外文關鍵詞: Near-Fault Ground Motions, Responses of High-Rise Buildings, Nonlinear Dynamic Analysis, Nonlinear Viscous Damper, PISA 3D, Distribution of Damping Coefficient
相關次數: 點閱:286下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近斷層地震(Near-Fault Ground Motions)比起遠域地震(Far-Field Ground Motions)對長週期結構更具有破壞力,其原因為近斷層地震具有巨大且長時程的速度脈衝。由楊【6】研究結果得知,高樓層結構受近斷層地震作用可能出現一種特殊變形反應,將其稱為鞭狀反應,會於結構之中低樓層產生集中且嚴重的剪力破壞,並造成結構極大的永久變形。
    安裝結構控制系統為現今常用以提升結構物耐震能力的方法,其中又以被動控制系統消散地震能量的方法更廣泛地被使用,被動控制系統主要分為隔震系統與減震系統兩大範疇。李【7】研究採用減震系統,在結構物中加裝非線性阻尼器吸收能量,藉由減少梁柱構架本身所承受之地震能量以達到提升耐震能力之效果,然而對於近斷層地震作用下的效益並不理想。
    本研究透過改變阻尼常數分配方法與考慮高樓結構中的撓曲作用改善非線性阻尼器於近斷層地震作用下的效益。依本研究結果,採取本文中建議的阻尼常數分配方法,會改變近斷層地震於中低樓層產生集中的破壞模式,變形反而均勻分散於多數樓層。此阻尼器設計方法不僅能避免因局部樓層嚴重破壞導致結構物倒塌的情況,根據阻尼器最大出力與總安裝支數判斷其總成本也將降低,故此方法兼具耐震效益與經濟性。


    In a pilot study of this research series conducted by Yang【6】, it was concluded that a special feature of deformation, called whip-like response, may cause severe damages to long period buildings subject to near-fault ground motions. The intensive velocity and/or displacement pulses of the near-fault ground motions have been recognized as one of the major causes for the severe damages to the building structures. More significantly, these damage features are different from those induced by far-field ground motions.
    The installation of structural control systems is a commonly used method to improve the earthquake resistance of structures. Among others, energy dissipation design using structural dampers has been widely adopted in the past decades. In a study of this research series conducted by Li【7】, adding nonlinear viscous dampers to improve the seismic performance is not efficient unless that sufficient damping ratio is provided. However, for high-rise buildings to add a large damping ratio to the structure may not be economically preferred.
    This study improves the effectiveness of nonlinear viscous dampers under near-fault ground motions by changing the distribution of damping coefficient and deducting the influence of flexural effect that is considered to be ineffective in the damping contribution to the high-rise building. Based on this study, the proposed distributions of damping coefficient change the concentrated damage style to a limited number of stories of the building when subjected to near-fault ground motions. In contrast, the inelastic deformation is smaller and is more uniformly distributed to much more stories of the building. This damper design method not only avoids the collapse of the structure due to severe damages located at a very limited number of stories, but also reduce the total cost due to the less number of dampers are needed to achieve the desired damping ratio. Consequently, the proposed method is effective and economical for the damage control of high-rise buildings under the excitation of near-fault ground motions.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究重點與內容 2 第二章 近斷層地震特性 4 2.1 近斷層地震特性 4 2.1.1 Maximum Incremental Velocity 4 2.1.2 Forward Directivity 4 2.1.3 Fling Step 5 2.2 受近斷層地震下結構之反應及破壞特徵 5 第三章 結構模型建立與模擬設定 7 3.1 模型基本資訊 7 3.2 程式模擬設定 7 3.2.1 EEZ Model梁柱剛性區域設定 7 3.2.2 剛性樓板和質量設定 10 3.3 非線性動力分析設定 11 3.3.1梁柱塑鉸設定 11 3.3.2同心斜撐塑性行為模擬 13 3.3.3雷力阻尼(Rayleigh Damping)設定 18 3.4地震資料之選取 19 第四章 含黏性阻尼器結構之設計理論 20 4.1現存含黏性阻尼器結構之等效阻尼比設計公式 20 4.1.1含線性黏性阻尼器之有效阻尼比-對角斜撐裝置 23 4.1.2含非線性黏性阻尼器之有效阻尼比-對角斜撐裝置 26 4.2修正含黏性阻尼器結構之等效阻尼比設計公式 29 4.2.1修正含線性黏性阻尼器之有效阻尼比-對角斜撐裝置【8】【30】 30 4.2.2修正含非線性黏性阻尼器之有效阻尼比-對角斜撐裝置【8】【30】 33 4.3現今工程常用之阻尼常數分配方法 35 4.3.1阻尼常數採平均分配之方法(Uniform Distribution , UD) 35 4.4建議之阻尼常數分配方法 36 4.4.1阻尼常數依據樓層剪力應變能分配於有效樓層之方法 (Distribution Based on Story Shear Strain Energy to Efficient Stories, SSSEES)【9】 36 4.4.2修正阻尼常數依據樓層剪力應變能分配於有效樓層之方法 (Modified Distribution Based on Story Shear Strain Energy to Efficient Stories, M_SSSEES) 40 4.5阻尼常數設計公式 44 4.5.1阻尼常數採平均分配之阻尼常數設計公式 44 4.5.2阻尼常數依據樓層剪力應變能分配於有效樓層之阻尼常數設計公式 45 4.5.3修正阻尼常數依據樓層剪力應變能分配於有效樓層之阻尼常數設計公式 47 第五章 分析結果與比較 50 5.1阻尼常數設計公式之計算過程 50 5.1.1模態有效質量與頂層最大位移之計算 50 5.1.2採用UD裝設非線性黏性阻尼器之阻尼常數計算 52 5.1.3採用SSSEES裝設非線性黏性阻尼器之阻尼常數計算 53 5.1.4採用M_SSSEES裝設非線性黏性阻尼器之阻尼常數計算 53 5.2以彈性分析驗證設計之阻尼比 54 5.3非線性動力分析結果與比較 55 5.3.1結構物於HWA019地震下之反應比較 55 5.3.2結構物於TCU052地震下之反應比較 60 5.4不同阻尼常數分配方法之效果比較 65 第六章 結論與建議 67 6.1結論 67 6.2建議 68 參考文獻 70 附表 74 附圖 95

    【1】葉超雄、葉義雄、羅俊雄、黃燦輝、蔡克銓、張荻薇、張國鎮、蔡益超、楊永斌 (1995),「日本阪神淡路地震引起阪神大震災之訪查與探討」,國家地震工程研究中心報,NCREE-95-00。
    【2】Zare, M., (2004), “Bam, Iran Earthquake of 26 December 2003, MW6.5: A Study on the Strong Ground Motion”, 13th World Conference on Earthquake Engineering, Vancouver, B. C., Canada, Paper No. 8001.
    【3】林主潔、林克強、洪曉慧、柴駿甫、黃世建、張道明、葉勇凱、劉光晏、劉季宇、蔡克銓 (2009),「2008中國汶川地震事件勘災報告」,國家地震工程研究中心研究報告,NCREE-09-011。
    【4】羅俊雄 (1999),「九二一集集大地震全面勘災精簡報告」,國家地震工程研究中心研究報告,NCREE-99-033。
    【5】王仁佐、王修賢、江宏偉、江奇融、李柏翰、李翼安、沈文成、林凡茹、林旺春、林哲民、林沛暘、林瑞良、洪曉慧、柴駿甫、郭俊翔、翁樸文、張毓文、許尚逸、陳俊仲、游忠翰、黃郁惟、黃雋彥、曾柏翰、楊卓諺、楊炫智、趙書賢、劉佳泓、盧志杰、賴姿妤、蕭輔沛、蘇進國(2018),“2018年2月6日花蓮地震勘災報告”,國家地震工程研究中心報告NCREE-18-005。
    【6】楊智宇 (2019),「高樓層房屋結構受近斷層地震之反應研究」,國立臺灣科技大學碩士論文。
    【7】李弈宏 (2020),「高樓層房屋結構受近斷層地震之反應研究(Ⅱ)」,國立臺灣科技大學碩士論文。
    【8】何松晏 (2004),「使用黏性阻尼器減震結構設計公式之修正與推展」,國立臺灣科技大學碩士論文。
    【9】林旺春 (2011),「考慮阻尼係數分配之黏性阻尼減震結構設計」,國立臺灣科技大學博士論文。
    【10】蔡克銓、林柏州 (2003),「物件導向非線性靜動態三維結構分析程式之研發」,國立臺灣大學地震工程研究中心報告,CEER 編號 R92-04。
    【11】Bertero, V.V., Mahin, S.A. and Herrera, R.A. (1978), “Aseismic Design Implications of Near-Fault San Fernando Earthquake Records”, Earthquake Engineering and Structural Dynamics, Volume 6, 31-42.
    【12】Benioff, H., (1955) “Mechanism and Strain Characteristics of the White Wolf Fault as Indicated by the Aftershock Sequence; Earthquakes in Kern County, California during 1952. ” California Division of Mines Bulletin,171:199-202
    【13】Singh, J. P., (1985) “Earthquake ground motion: Implications for designing structures and reconciling structural damage. ” Earthquake Spectra, EERI, 1(2)
    【14】Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A. (1997), “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity”, Seismological Research Letters, Volume 68, 199-222
    【15】Reid, H. F., (1910), “The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission”, Volume 2, Carnegie Institution of Washington, D.C.
    【16】E. Kalkan, S.K. Kunnath, (2006), “Effects of fling-step and forward-rupture directivity on the seismic response of buildings”, Earthquake Spectra, 22 (2), pp. 367-390.
    【17】Hall, J.F., Heaton, T.H., Halling, M.W. and Wald, D.J. (1995), “Near-Source Ground Motion and Its Effects on Flexible Buildings”, Earthquake Spectra, Volume 11, No.4.
    【18】Phan, V., Saiidi, M.S., Anderson, J. and Ghasemi, H. (2007), “Near-Fault Ground Motion Effects on Reinforced Concrete Bridge Columns”, Journal of Structural Engineering, ASCE, Volume 133, No.7 , July, pp. 982-989.
    【19】Behzad Rafezy, (2014), “Evaluation of Steel Panel Zone Stiffness Using Equivalent End Zone (EEZ) Model”, SEAOC 2014 Convention, At California, USA.
    【20】Kennedy, G., and Goodchild, C.H., (2005), Practical Yield Line Design, MPA The Concrete Centre, Surrey.
    【21】內政部營建署 (2010),「鋼結構極限設計法規範及解說」。
    【22】FEMA, (1997), NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, October, Washington DC.
    【23】Murat Dicleli, (2007), “Physical Theory Hysteretic Model for Steel Braces”, Journal of Structural Engineering, Volume 134, No. 7, 1215-1228.
    【24】Chopra, Anil K., (1995), Dynamics of Structures, Prentice-Hall, New Jersey.
    【25】Ramirez, O.M., Constantinou, M.C., Kircher, C.A., Whittaker, A., Johnson, M. and Gomez, J.D.,(2000), Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems, Technical Report MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, University of Buffalo, State University of New York, Buffalo, NY.
    【26】黃震興、黃尹男,“使用線性黏性阻尼器建築結構之耐震試驗與分析”,國家地震工程研究中心報告NCREE-01-022,2001。
    【27】黃震興、黃尹男、洪雅惠,“含非線性黏性阻尼器結構之減震試驗與分析”,國家地震工程研究中心報告NCREE-02-020,2002。
    【28】Seleemah, A.A., and Constantinou, M.C., (1997), Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers, Report No. NCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York.
    【29】易序良 (2003),「使用黏性阻尼器減震結構設計公式修正()」,國立臺灣科技大學碩士論文。
    【30】Hwang, J. S., Huang, Y. N., Yi, S. L. and Ho, S. Y. (2008), “Design formulations for supplemental viscous dampers to building structures,” Journal of Structural Engineering, ASCE, 134(1), 22-31.
    【31】Kwon, O. S. and Kim, E. S. (2010), “Evaluation of building period formulas for seismic design,” Missouri University of Science and Technology, Rolla, U.S.A.

    QR CODE