簡易檢索 / 詳目顯示

研究生: 楊智宇
Jhih-Yu Yang
論文名稱: 高樓層房屋結構受近斷層地震之反應研究
A Study of High-rise Building Responses to Near-Fault Ground Motions
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 汪向榮
Shiang-Jung Wang
黃尹男
Yin-Nan Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 224
中文關鍵詞: 近斷層地震速度脈衝高樓層結構反應PISA3D非線性動力歷時分析
外文關鍵詞: near-fault ground motions, velocity pulse, high-rise building response, PISA3D, nonlinear dynamic time history analysis
相關次數: 點閱:393下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近斷層地震(Near-Fault Ground Motions)比起遠域地震(Far-Field Ground Motions)對長週期結構更加具有破壞力,其原因在於近斷層地震具有巨大且長時程的速度脈衝,以及明顯又快速的位移變化。1995年Hall等人的研究指出柔性結構受到近斷層地震的顯著地表位移脈衝作用下會產生嚴重的破壞。
    為了探討受近斷層地震影響下之高樓層建築結構的行為,本研究設計並建立一棟具三十五樓之高樓層結構模型,為一傳統同心斜撐系統結合特殊抗彎矩構架系統結合之二元系統鋼結構。研究考慮之地震力方向上,結構由四組平行構架所組成,包含兩組特殊抗彎矩構架以及兩組二元系統構架。而結構根據現今設計規範之檢核、結構各種元件的模擬以及構件的塑性行為模擬與設定…等進行設計與建立,欲使模型在非線性動力歷時分析下呈現最接近實際的結構反應。
    由研究結果得知,高樓層結構受近斷層地震作用下的破壞模式與遠域地震有所不同。更重要的是,沿結構高度分佈的側向力照理應根據結構動力學理論與模態形狀成比例,然而實際上卻發現其側向力分布以及結構破壞模式完全無法由模態進行預測,結構可能出現一種特殊變形反應,本研究稱之為甩鞭狀反應。出現甩鞭狀反應的結構於中低樓層會產生集中且嚴重的剪力破壞,並造成結構極大的永久變形。
    本研究認為近斷層地震作用下結構的甩鞭狀反應值得進一步研究,因為當前的耐震設計規範仍無法預測。


    Near-fault ground motions usually has large and long-duration velocity pulses and displacement pulses. These properties may cause severe damage to long-period structures. In 1995, Hall et al. discovered that flexural structures are very vulnerable to near-fault ground motions, in particular to those with significant ground displacement pulses. For the purpose of investigating the behavior of high-rise building structure subject to the near-fault ground motions while the availability of recorded near fault ground motions with large earthquake magnitudes is higher after 1999 Taiwan Chi-Chi earthquake, a 35-story building is designed according to Taiwan Seismic Design Code for Buildings. The building is composed of four parallel frames including two dual systems and two special moment resisting frames in the direction of consideration. The dual system is a concentrically braced frame with chevron braces. The study has found that the damaging pattern of the building is different when subject to near-fault ground motions and far-field ground motions. More significantly, the damaging feature is different that the dynamic characteristics of the building. The lateral force distribution along the building height, which should be proportional to the mode shape according to structural dynamics theory, is irrelevant to the damage pattern of the building. The whip-like behavior of the building under near-fault ground motion excitation deserves for more future study because it is not predictable by the current seismic design code.

    致謝 I 摘要 III 英文摘要 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究重點與內容 3 第二章 近斷層地震特性 5 2.1 前言 5 2.2 近斷層地震特性 5 2.2.1 錯動方向性效應 5 2.2.2 地表永久位移 6 2.2.3 脈衝的早期發生 7 2.2.4 地表速度增量 8 2.3 受近斷層地震下結構之反應及破壞特徵 9 2.4 地震之主要脈衝週期的辨識 9 2.5 近斷層速度脈衝參數 12 第三章 結構模型建立與模擬設定 13 3.1 前言 13 3.2 結構模型設計與檢核 13 3.2.1 結構基本資訊 13 3.2.2 結構耐震設計 14 3.2.3 結構桿件細部設計 19 3.3 軟體設定及結構模擬 22 3.3.1 梁柱腹板交會區之剛性模擬 22 3.3.2 剛性樓板與質量設定 24 3.4 非線性分析之模擬設定 25 3.4.1 非線性動力分析設定 25 3.4.2 梁柱之塑鉸設定 26 3.4.3 同心斜撐之塑性行為模擬 28 第四章 分析結果與探討比較 35 4.1 前言 35 4.2 地震資料選取 35 4.3 地震歷時之非線性動力分析 38 4.3.1 結構受遠域地震之反應 38 4.3.2 結構受近斷層地震之反應 40 4.4 不同地震歷時下結構反應之比較 44 4.4.1 位移變化及加速度變化之比較 44 4.4.2 各樓層之層間變位角比較 46 4.4.3 構件破壞變形之比較 47 4.4.4 受近斷層地震下之結構甩鞭狀反應 48 4.4.5 針對結構反應與地震脈衝參數進行比較 49 4.4.6 地震主要脈衝週期與結構反應的探討 50 第五章 結論與建議 53 5.1 結論 53 5.2 建議 54 參考文獻 55 附表 59 附圖 71  

    【1】 羅俊雄,“九二一集集大地震全面勘災精簡報告”,國家地震工程研究中心研究報告,NCREE-99-033,1999。
    【2】 葉超雄、葉義雄、羅俊雄、黃燦輝、蔡克銓、張荻薇、張國鎮、蔡益超、楊永斌(1995),“日本阪神淡路地震引起阪神大震災之訪查與探討”,國家地震工程研究中心報告NCREE-95-001。
    【3】 Zare, M. (2004), “Bam, Iran Eathquake of 26 December 2003, MW6.5: A Study on the Strong Ground Motion”, 13th World Conference on Earthquake Engineering Vancouver, B. C., Canada, Paper No. 8001.
    【4】 林主潔、林克強、洪曉慧、柴駿甫、黃世建、張道明、葉勇凱、劉光晏、劉季宇、蔡克銓,“2008中國汶川地震事件勘災報告”,國家地震工程研究中心研究報告,NCREE-09-011,2009。
    【5】 Bertero, V.V., Mahin, S.A. and Herrera, R.A. (1978), “Aseismic Design Implications of Near-Fault San Fernando Earthquake Records.” Earthquake Engineering and Structural Dynamics, Vol.6, 31-42.
    【6】 Hall, J.F., Heaton, T.H., Halling, M.W. and Wald, D.J. (1995), “Near-Source Ground Motion and Its Effects on Flexible Buildings.” Earthquake Spectra, Vol.11, No.4.
    【7】 內政部營建署,“建築物耐震設計規範及解說”,臺北,2011。
    【8】 Baker, J.W. (2007), “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, Vol.97, No.5, 1486-1501.
    【9】 劉哲瑞,“近斷層地震之速度脈衝週期研究”,台灣科技大學碩士論文,2017。
    【10】 謝曜安,“房屋結構受近斷層地震之反應研究 (I)”,台灣科技大學碩士論文,2018。
    【11】 曾繹豪,“近斷層地震參數對隔震系統之影響”,台灣科技大學碩士論文,2019。
    【12】 Benioff, H. (1955), “Mechanism and Strain Characteristics of the White Wolf Fault as Indicated by the Aftershock Sequence; Earthquakes in Kern County, California during 1952,” California Division of Mines Bulletin, 171: 199–202.
    【13】 Jogeshwar P. Singh (1985), “Earthquake Ground Motions: Implications for Designing Structures and Reconciling Structural Damage.” Earthquake Spectra: February 1985, Vol. 1, No. 2, 239-270.
    【14】 Reid, H.F. (1910), “The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission.” Vol.2, Carnegie Institution of Washionton, D.C.
    【15】 Chiou, B., Darragh, R., Gregor, N., and Silva, W. (2008), “NGA project strong motion database.”, Earthq. Spectra 24, No. 1, 23-44.
    【16】 Burks, L. S., and Baker, J. W. (2015), “A predictive model for fling-step in near-fault ground motions based on recordings and simulations.” Soil Dynamics and Earthquake Engineering. Stanford Digital Repository. Available at: http://purl.standford.edu/pz055cs5875
    【17】 Boore, D. M. (2001), “Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake.” Bulletin of the Seismological Society of America, 91, 5, 1199-1211.
    【18】 Shahi, S.K., and Baker, J.W. (2014), “An Efficient Algorithm to Identify 56 Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Vol. 104, No.5, 2456-2466.
    【19】 胡昌華,“基於MATLAB 6.X的系統分析與設計:小波分析”,西安市:西安電子科技大學出版社,2004。
    【20】 內政部營建署,“鋼結構極限設計法規範及解說”,臺北,2010。
    【21】 Behzad Rafezy (2014), “Evaluation of Steel Panel Zone Stiffness Using Equivalent End Zone (EEZ) Model.” SEAOC 2014 Convention, At California, USA.
    【22】 蔡克銓、林柏州 (2003),“物件導向非線性靜動態三維結構分析程式之研發”,國立台灣大學地震工程研究中心報告,CEER 編號 R92-04。
    【23】 FEMA, (1997), NEHRP Guidelines and Commentary for the Seismic Rahabilitation of Buildings, Reports No. 273, October, Washington DC.
    【24】 Murat Dicleli (2007), “Physical Theory Hysteretic Model for Steel Braces.” Journal of Structural Engineering, Vol. 134, No. 7, 1215-1228.
    【25】 Bruce, F. Maison, and Egor P. Popov. (1980), “Cyclic Response Prediction for Braced Steel Frames.” Journal of the Structural Division, Vol. 106, No. 7, 1401-1416.
    【26】 Lin, B.Z., Yu, Y.J., Chuang, M.C., and Tsai, K.C. “PISA3D R3.2 user’s manual.” National Center for Research on Earthquake Engineering, Taiwan Department of Civil Engineering, National Taiwan University All Rights Reserved, March, 2011.
    【27】 V Lakshmi, and B Ramya Madhuri (2016), “Analysis of a Steel Frame Building With and Without Shear Walls and Different Configurations of Bracings.” GE-International Journal of Engineering Research, 2321-1717.
    【28】 Shih-Ho Chao, Netra B. Karki, and Dipti R. Sahoo (2012), “Seismic Behavior of Steel Buildings with Hybrid Braced Frames.” Journal of Structural Engineering, Vol. 139, No. 6, 1019–1032.
    【29】 SAP2000 Analysis Reference Volume 1, (1996), Computers and Structures, Inc., Berkeley, California.
    【30】 Ashok K. Jain, Subhash C. Goel (1978), “Hysteresis Models for Steel Members Subjected to Cyclic Buckling or Cyclic End Moments and Buckling (User's Guide for Drain-2D: EL9 and EL10).” University of Michigan, Depatment of Civil Engineering, 1978.

    QR CODE