簡易檢索 / 詳目顯示

研究生: 余奕衡
I-Heng Yu
論文名稱: TaN、TaN+Cu及TiNO薄膜電阻元件
Study of TaN , TaN+Cu and TiNO Thin Film Resistors
指導教授: 周賢鎧
Shyankay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 薄膜電阻氮化鉭氮化氧鈦
外文關鍵詞: thin film resistor, TCR, TaN, TiNO, TaN+Cu
相關次數: 點閱:234下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的在開發高阻值(≧3 kΩ)以及低TCR值(±25 ppm/℃)之薄膜電阻元件。實驗材料系統可分為氮化鉭(TaN)、共濺鍍氮化鉭與銅複合膜(TaN/Cu)以及氮化氧鈦(TiNO),三種材料系統均可透過改變薄膜成份與結構調整電阻以及電阻溫度係數。
本實驗使用低略角X-ray繞射儀分析薄膜結構與晶粒尺寸,使用場發射電顯微鏡觀察薄膜之表面形態,使用表面輪廓分析儀量測薄膜厚度以及使用Keithley 2410量測薄膜片電阻以及電阻溫度係數。
實驗結果顯示氮化鉭(TaN)薄膜之電阻與氮氣通量成正比,與薄膜厚度成反比,TCR絕對值與氮氣通量成反比,與薄膜厚度成正比;真空退火處理使TaN薄膜偏向金屬特性,使Ta2N薄膜偏向氮化物特性。共濺鍍氮化鉭與銅薄膜(TaN/Cu)之電阻與銅濺鍍功率在銅濺鍍功率低於30 W時成正比,高於30 W時成反比,TCR值與銅濺鍍功率成正比。氮化氧鈦薄膜(TiNO)之電阻與退火時間之斜率與大氣退火溫度成正比,TCR與退火時間之斜率與大氣退火溫度成反比。
在製程條件為鈦濺鍍功率50 W,鍍膜溫度25 ℃,氮氣通量10 %,薄膜厚度100 nm之氮化鈦薄膜在大氣下270 ℃退火5分鐘、300 ℃退火1分鐘其電阻值高於計劃目標值3000 Ω,TCR值滿足目標±25 ppm/℃之範圍在退火時間5至10分鐘內。


The target of this research is to develop thin film resistor (TFR) with a high resistance (≥3000 Ω) and low temperature coefficient of resistance (±25 ppm/℃)

The materials investigated in this study are TaN , TaN-Cu and TiNO , and all of their resistivity and TCR can be controlled by change their composition and structure.

The morphology and crystal size of thin film were analyzed by XRD , surface morphology of thin film by FE-SEM , thickness of thin film by Stylus Profiler and sheet resistance and temperature coefficient of resistance(TCR) by Keithley 2410.

The experimental result indicated that the resistivity of TaN was proportional to partial pressure of nitrogen , inversely proportional to film thickness. The modulus of TCR of TaN is related with film thickness , and inversely correlated with partial pressure of nitrogen.

The resistivity of TaN-Cu was increased with sputtering power of copper while power smaller than 30 W , and it decreased with sputtering power of copper at higher than 30 W. However , the TCR of TaN-Cu was proportional to sputtering power of Cu all the time.

The resistance of TiNO was increased with time of heat treatment on hot plate in ambient , and TCR was decreased with temperature of hot plate.

In this study , we found the applicable process parameters of TiNO TFR were DC 70 W , 10 % of partial pressure of nitrogen , room temperature deposition , and heat treatment by hot plate in ambient for 5 to 10 minutes. The resistance of TiNO was higher than 3000 Ω and there was a ZTC point (zero temperature coefficient of resistivity between the region of thermal treatment time of 5 to 10 minutes.

中文摘要.........................................................................................................................i 英文摘要........................................................................................................................ii 致謝...............................................................................................................................iii 目錄................................................................................................................................v 圖目錄.........................................................................................................................viii 表目錄..........................................................................................................................xii 第一章 前言與研究目的 1 第二章 文獻回顧 3 2-1 薄膜電阻 3 2-2 影響薄膜電阻性質的因素 5 2-3 Ta-N薄膜 6 2-3-1 TaN薄膜之結構分析...................................................................................7 2-3-2 TaN薄膜之電子性質...................................................................................8 2-3-3其他影響TaN性質之參數.........................................................................10 2-4 TaN/Cu薄膜 .18 2-4-1 TaN+Cu薄膜之結構分析.........................................................................18 2-4-2 TaN+Cu薄膜之電子性質.........................................................................21 2-5 TiNO薄膜 23 2-5-1 TiNO薄膜之結構分析...............................................................................25 2-5-2 TiNO薄膜之電子性質...............................................................................26 第三章 實驗方法與步驟 28 3-1 實驗用材料與藥品規格 28 3-2 實驗儀器與裝置 29 3-3 實驗步驟 30 3-3-1實驗流程.....................................................................................................30 3-3-2 基材清洗流程............................................................................................33 3-4 製程儀器介紹 34 3-4-1 磁控式濺鍍系統........................................................................................34 3-4-2 磁控式共濺鍍系統....................................................................................35 3-4-3 真空爐(石英管狀爐).................................................................................36 3-4-4 加熱板........................................................................................................37 3-5 薄膜之分析儀器 37 3-5-1 掃描式電子顯微鏡....................................................................................37 3-5-2 X光繞射儀.................................................................................................38 3-5-3 四點探針....................................................................................................40 3-6 薄膜之特性分析 40 3-6-1 薄膜厚度的量測........................................................................................40 3-6-2 微晶尺寸的計算........................................................................................41 3-6-3 片電阻及電阻係數的量測........................................................................41 3-6-4 電阻溫度係數的計算................................................................................42 第四章 結果與討論 43 4-1 TaN薄膜.. 43 4-1-1 TaN薄膜之形態分析.................................................................................43 4-1-2 TaN薄膜之電子性質分析.........................................................................53 4-1-3 TaN薄膜之研究結果.................................................................................57 4-2 TaN+Cu薄膜 .58 4-2-1 TaN+Cu薄膜前TaN分析........................................................................58 4-2-2 TaN+Cu薄膜之形態分析.........................................................................59 4-2-3 TaN+Cu薄膜之電子性質分析.................................................................63 4-2-4 TaN+Cu薄膜之研究結果.........................................................................64 4-3 TiNO薄膜 65 4-3-1 TiNO薄膜前TiN分析..............................................................................65 4-3-2 TiNO薄膜之電子性質分析.......................................................................72 4-3-3 TiNO薄膜之研究結果...............................................................................74 第五章 結論 75 參考文獻......................................................................................................................78 附錄..............................................................................................................................82

[ ]R. K. Ulrich , L. W. Schaper , Integrated passive component technology , Wiley-IEEE , USA (2003).
[2]J. E. Sundgren , “Structure and properties of TiN coatings” , Thin Solid Films,
Vol. 128 , pp. 21-44 (1985).
[3]Y. lgasaku and H. Mitsuhashi , “The effects of substrate bias on the structural and electrical properties on TiN films prepared bu reactive r.f. sputtering” , Thin Solid Films ,Vol. 70 , pp. 17-25 (1980).
[4]D. J. Willmott , “Effect of nitrogen in the electrical and structural properties of triode-sputtered tantalum films” , Journal of Applied Physics , Vol. 43 , pp. 4865 (1972).
[5]H. B. Nie , S. Y. Xu , S. J. Wang , L. P. You , Z. Yang , C.K. Ong , J. Li and T. Y. F. Liew , “Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio frequency magnetron sputtering” , Applied Physics A: Materials Science & Processing , Vol. 73 , pp. 229-236 (2001).
[6]N. D. Cuong , D. J. Kim , B. D. Kang , C. S. Kim , K. M. Yu and S. G. Yoon , “Characterization of tantalum nitride thin films deposited on SiO2/Si substrates using dc magnetron sputtering for thin film resistors” , Journal of The Electrochemical Society , Vol. 153 , No. 2, pp. G164-G167 (2006).
[7]A. Schauer and M. Roschy , “R.F. sputtered β-tantalum and b.c.c. tantalum films” , Thin Solid Films , Vol.12 , pp. 313-317 (1972).
[8]S. I. Nakao , M. Numata and T. Ohmi , “Thin and low-resistivitytantalum nitride diffusion barrier and giant-grain copper interconnects for advanced ULSI metallization” , Japan Journal of Applied Physical , Vol. 38 , pp. 2401-2405 (1999).
[9]R. W. Berry, P. M. Hall and M. T. Harris, Thin Film Technology , Van Nostrand , New Jersey , pp. 201 (1980).
[10]T. Oku , E. Kawakami , M. Uekubo , K. Takahiro , S. Yamaguchi and M. Murakami , “Diffusion barrier property of TaN between Si and Cu” , Applied Surface Science , Vol. 99 , issue 4 , pp. 265-272 (1996).
[11]M. Stavrev , D. Fischer , C. Wenzel , K. Drescher and N. Mattern , “Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films” , Thin Solid Films , Vol. 307 , issue 1-2 , pp. 79-88 (1997).
[12]X. Sun , E. Kolawa , J. S. Chen , J. S. Reid and M. A. Nicolet , “Properties of reactively sputter-deposited Ta-N thin films” , Thin Solid Films , Vol.236 ,
pp. 347-351 (1993).
[13]N. Terao, “Structure of tantalum nitrides” , Japanese Journal of applied physics , Vol.10 , No. 2 , pp.248-259 (1971).
[14] N. Schnberg, “An X-ray study of the tantalum-nitride System” , Acta Chemical Scandinavica , Vol. 8 , pp. 199-203 (1954).
[15]T. Riekkinen , J. Molarius , T. Laurila , A. Nurmela , I. Suni and J. K. Kivilahti , “Reactive sputter deposition and properties of TaxN thin films” , Microelectronic Engineering , Vol. 64, pp. 289–297 (2002).
[16]X. P. Dong , J. Wu , “The role of aluminum in the crystallization of Cr-Si-Ni resistive films” , Materials Science and Engineering , Vol. 339 , pp. 297-301 (2003).
[17]N. D. Cuong , D. J. Kim , B. D. Kang , C. S. Kim and S. G. Yoon , “Effect of film thickness on the electrical properties of tantalum nitride thin films deposited on SiO2/Si substrate for -type attenuator applications” , Material Science and Engineering B , Vol. 135, issue 2, pp. 162-165 (2006).
[18]J. J. Van Den Broek , J. J. T. M. Donkers , R. A. F. Van Der Rijt and J. T. M. Janssen , “Metal film precision resistors: Resistive metal films and a new resistor concept” , Philips Journal of Research , Vol. 51 , pp. 429-447 (1998).
[19]唐偉忠,薄膜材料 製備原理、技術及應用(第二版),冶金工業出版社,北京 (2003)。
[20]N. D. Cuong , D. J. Kim , B. D. Kang , C. S. Kim and S. G. Yoon , “Effect of annealing Temperature on structural and electrical properties of tantalum nitride thin film resistors deposited on SiO2/Si substrates by dc sputtering technique” , Journal of Vacuum Science and Technology B , Vol. 24 , issue 2 , pp. 682-685 (2006).
[21]C. M. Wang , J. H. Hsieh , C. Li , Y. Fu and T. P. Chen , “Effect of annealing on the microstructure and electrical properties of TaN-Cu nanocomposite thin films” , surface and Coating Technology , Vol.193 , pp. 173-177 (2005).
[22]T. Laurila , K. Zeng , J. K. Kivilahti , J. Molarius , T. Riekkinen and I. Suni , “Tantalum carbide and nitride diffusion barriers for Cu metallization ” , Microelectronic Engineering , Vol. 60 , pp. 71-80 (2002).
[23]C. Surtanarayana, “Nanocrystalline materials” , International Materials Reviews , Vol. 40 , pp. 41-64 (1995).
[24]X. Y. Qin , W. Zhang, L. D. Zhang and L. D. Jiang , “Low-temperature resistance and its temperature dependence in nanostructured silver” , Physical Review B ,
Vol. 56 , No. 16, pp. 10956-10604 (1997).
[25]Y. l. Jeyachandran , S. K. Narayandass , D. Mangalaraj , S. Areva and J. A. Mielczarski , “Properties of titanium nitride films prepared by direct current magnetron sputtering” , Materials Science and Engineering A , Vol. 445-446 ,
pp. 223-236 (2007).
[26]M. Wittmer, “Properties and microelectronics applications of thin films refractory metal nitride” , Journal of Vacuum Science and Technology , Vol. 3 , issue 4 , pp. 1783-1797 (1985).
[27]G. Gagnon, J. F. Currie, G. Beique, J. L. Brebner, S. C. Gujrathi and L. Ouellet, “Characterization of reactively evaporated TiN layers for diffusion barrier applications” , Journal of Applied Physics , Vol. 75 , issue 3 , pp. 1565-1570 (1994).
[28]E. O. Travis and R. W. Fiordalice, “Manufacturing aspects of low pressure chemical-vapor-deposited TiN barrier layers” , Thin Solid Films , Vol. 236 , issue 1-2 , pp. 325-329 (1993).
[29]M. Tao, D. Udeshi, S. Agarwal, E. Maldonado and W. P. Kiek, “Negative Schottky barrier between titanium and n-type Si(0 0 1) for low-resistance ohmic contacts ” , Solid-State Electronics , Vol. 48 , pp.335-338 (2004).
[30]G. B. Smith, A. B. David and P. D. Swift , “A new type of TiN coating combining broad band visible transparency and solar control ” , Renewable Energy , Vol. 22 , pp.79-87 (2001).
[31]F. Vaz, P. Cerqueira, L. Rebouta, S.M. C.Nascimento, E. Alves , Ph. Goudeau, J. P. Riviere and J. D. Gijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films” ,Thin Solid Films , Vol.447-448 , pp. 449-454 (2004).
[32]J. M. Wang , W. G. Liu and T. Mei , “The effect of thermal treatment on the electrical properties of titanium nitride thin films by filtered arc plasma method” , Ceramics International , Vol. 30 , pp. 1921-1924 (2004).
[33]B. E. Cole, R. Higashi, J. Ridley and J. Holmen, “Large-area infrared microemitter arrays for dynamic scene projection” , Proceeding of SPIE , Vol. 3368 , pp. 57-70 (1998).
[34]B. E. Cole and C. J. Jan , “Low power infrared scene projector array and method of manufacture” , US Patent , 5600148 (1997).
[35]J. E. Sundgren, B. O. Johansson, S. E. Karlsson and H.T.G. Hentzell, “Mechanisms of reactive sputtering of titanium nitride and titanium carbide II: Morphology and structure ” , Thin Solid Films , Vol. 105 , pp. 367-384 (1983).
[36]W. Posadowski, L. Krl-Stpniewska and Z. Ziołowski , “Properties of TiNx films reactively sputtered in an argon-nitrogen atmosphere” , Thin Solid Films , Vol. 62 , pp. 347-351 (1979).
[37]M. Wittmer and H. Melchior, “Applications of TiN thin films in silicon device technology” , Thin Solid Films , Vol. 93 , pp. 397-405 (1982).
[38]S. Schiller, G. Beister and W. Sieber, “Reactive high rate D.C. sputtering: Deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode ” , Thin Solid Films , Vol. 111 , pp. 259-268 (1984).
[39]T.J. Coutts , Active and Passive Thin Film Devices, Academic , London (1978).
[40]Hong Xiao , Introduction to semiconductor Manufacturing Technology , Prentice Hall , USA (2001).
[41]N. D. Cuong , D. J. Kim , B. D. Kang , C. S. Kim , S. G. Yoon , “Characterizations of high resistivity TiNxOy thin films for applications in thin film resistors” , Microelectronics Reloability , Vol. 47 , pp. 752-754 (2007).
[42]N. El-Kadry, A. Ashour and S. A. Mahmoud , “Structural dependence of d.c. electrical properties of physically deposited CdTe thin films” , Thin Solid Films , Vol. 269 , pp. 112-116 (1995).
[43]H. Y. Chen and F. H. Lu , “Oxidation behavior of titanium nitride films” , Journal of vacuum Science & Technology A , Vol. 23 , pp. 1006-1009 (2005).
[44]鮑忠興,劉思謙,近代穿透式電子顯微鏡實務,滄海書局,台中 (2008)
[45]許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,新竹 (1993)。
[46]蔡育成,「Ta2N/Si(100)之介面反應研究」,碩士論文,台灣科技大學,台北 (2004)。
[47]王貞芮,「添加銅之二氧化矽複合薄膜之研究」,碩士論文,台灣科技大學,台北 (2005)。
[48]李成哲,「TiFeCoNiCux合金薄膜微結構及導電特性之研究」,碩士論文,中國文化大學,台北 (2009)。

QR CODE