簡易檢索 / 詳目顯示

研究生: 陳泓明
Hung-ming Chen
論文名稱: 以離子交換法合成CuFeO2光觸媒及其在可見光驅動水分解產氫之應用
Synthesis of nanocrystalline CuFeO2 by ion-exchange method and its applications on hydrogen generation via visible-light-driven photocatalytic water splitting
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 周澤川
Tse-chuan Chou
蘇威年
Wei-nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 光觸媒可見光氫氣亞銅正鐵氧化物水分解
外文關鍵詞: CuFeO2, visible-light-driven, Z-scheme
相關次數: 點閱:195下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以離子交換法合成CuFeO¬2光觸媒,並藉由X-ray光繞射分析、穿透式電子顯微鏡以及可見光-近紅外光漫反射光譜,進行晶格結構、晶粒大小、能帶間隙以及光吸收特性之鑑定,而探討材料特性對CuFeO¬2光觸媒活性之影響。
    研究結果發現,以EDFS•3H2O作為前驅物,在1 L/min流通空氣下,經530 ℃之兩次熱處理後,可成功地合成高結晶性之α-NaFeO2,其晶粒尺寸為5~10 nm。在氧氣充足之環境下,獲得高結晶性之α-NaFeO2產物,可歸因於β-NaFeO2之生成被有效地抑制。
    以高結晶性之α-NaFeO2作為前驅物,在500 ℃之熔融CuCl中,經Na+-Cu+離子交換,可成功地合成純相之CuFeO2,其顆粒尺寸為10~20 nm。當離子交換程序之溫度提高時,CuFeO2晶粒沿著垂直c軸方向有較顯著之成長,則使CuFeO2產物裸露出較多與c軸正交之晶面,有利於CuFeO2吸收700 ~900 nm 之近紅外光。
    本研究合成之CuFeO2產物受光激發後,CuFeO2顆粒內部之晶界,快速地捕捉光生電子與光生電洞,而形成再結合之場所,因此水分子則無法成功地在CuFeO2表面被還原成氫氣。


    Nanocrystalline CuFeO2 has been synthesized successfully by ion-exchanging molten CuCl with layer-structured -NaFeO2. Crystal structure and domain size of CuFeO2 were characterized by XRD and TEM. Optical properties of CuFeO2 were determined by visible-infrared spectrum as well. In addition, Z-scheme photocatalytic water splitting without electron mediator carried out in a fluidized-bed photocatalyst reactor with as-synthesized CuFeO2 and Bi20TiO32 powder is proposed and measured in the present work.
    First, nanocrystalline -NaFeO2 was synthesized successfully by thermal decomposition of EDFS under the air flow of 1 L/min and calcinations at 530 ℃ twice. The grain size of -NaFeO2 is measured about 5 ~ 10 nm by TEM. High crystallinity of -NaFeO2 results from suppressing the formation of -NaFeO2 under sufficient O2 condition.
    Next, nanocrystalline CuFeO2 was synthesized successfully by ion-exchange method and domain size of CuFeO2 is about 5 ~ 10 nm determined by TEM. Domain boundaries of CuFeO2 result from sintering of grains in molten CuCl. Crystal growth of CuFeO2 is more significant in direction of a axis and b axis when operating temperature of molten CuCl increases. Near-IR absorbance of CuFeO2 increases slightly with increasing dimension of the plane in c axis.
    The H2 production from the system could not be successfully detected. One reason could be attributed to the serious recombination of photon-generated electrons and holes at the grain boundaries of CuFeO2.

    目錄 摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 光電化學系統應用於太陽光能之轉化 2 第二章 文獻回顧與研究目的 6 2.1 可見光驅動之光觸媒水分解反應 6 2.1.1 可見光驅動光觸媒水分解反應之工作原理 6 2.1.2 可見光驅動光觸媒之發展與瓶頸 9 2.2 亞銅鐵氧化物(CuFeO2)之材料性質 12 2.2.1亞銅鐵氧化物之光電化學性質 12 2.2.2 亞銅鐵氧化物之晶格結構 13 2.3 以有機金屬錯化物之熱裂解法合成金屬氧化物 15 2.4 以離子交換法合成具層狀結構之金屬氧化物 17 2.5 研究動機與目的 18 2.5.1 以α-NaFeO2作為前驅物,經離子交換法合成CuFeO2 18 2.5.2 以流體化床光觸媒反應器應用於太陽光能之轉化 18 2.5.3研究架構 20 第三章 實驗部份 20 第三章 實驗部份 21 3.1儀器設備 21 3.2實驗藥品 22 3.3實驗步驟 22 3.3.1非流通空氣氣氛下合成α-NaFeO2 22 3.3.2流通空氣氣氛下合成α-NaFeO2 22 3.3.3以α-NaFeO2作為前驅物經離子交換法合成CuFeO2 23 3.3.4 以固態法製備Bi20TiO32 23 3.4 材料鑑定與性質分析 24 3.4.1 以熱重損失分析(TGA)進行熱穩定性測試 24 3.4.2 以粉末X光繞射(XRD)鑑定晶格結構 24 3.4.3 以穿透式電子顯微鏡(TEM)觀測晶粒尺寸 24 3.4.4 以可見光-紅外線吸收光譜(Visible-IR Absorbance)分析光觸媒之能隙值 25 3.5 光觸媒活性測試 26 第四章 結果與討論 27 4.1 EDFS•3H2O之熱處理溫度對合成α-NaFeO2之影響 27 4.1.1 EDFS•3H2O之熱穩定性分析 27 4.1.2 α-NaFeO2之晶格結構鑑定 32 4.1.3 α-NaFeO2之表面型態分析 39 4.1.4 綜合討論 42 4.2氯化亞銅(CuCl)之熔融溫度對α-NaFeO2經離子交換合成CuFeO2之影響 44 4.2.1 CuFeO2之晶格結構鑑定 44 4.2.2 CuFeO2之元素組成分析 48 4.2.3 CuFeO2之表面型態分析 50 4.2.4 CuFeO2之光吸收特性 53 4.2.5 綜合討論 55 4.3 光觸媒活性之測試 57 4.3.1 光觸媒水分解之產氫速率測試 57 4.3.2 綜合討論 57 第五章 結論 59 第六章 未來工作 60 參考文獻 61

    1. Kudo A, Miseki Y: Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38:253-278.
    2. Fujishima A, Honda K: Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238:37-38.
    3. Gratzel M: Photoelectrochemical cells. Nature 2001, 414:338-344.
    4. Licht S: Multiple band gap semiconductor/electrolyte solar energy conversion. Journal of Physical Chemistry B 2001, 105:6281-6294.
    5. Liu M, You W, Lei Z, Zhou G, Yang J, Wu G, Ma G, Luan G, Takata T, Hara M, et al: Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chemical Communications 2004, 10:2192-2193.
    6. Hara M, Nunoshige J, Takata T, Kondo JN, Domen K: Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chemical Communications 2003, 9:3000-3001.
    7. Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K: Photoreactions on LaTiO2N under visible light irradiation. Journal of Physical Chemistry A 2002, 106:6750-6753.
    8. Sasaki Y, Nemoto H, Saito K, Kudo A: Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C 2009, 113:17536-17542.
    9. Maeda K, Domen K: New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C 2007, 111:7851-7861.
    10. Abe R, Takata T, Sugihara H, Domen K: Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chemical Communications 2005:3829-3831.
    11. Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K: Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator. Chemical Physics Letters 2008, 452:120-123.
    12. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A: Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters 2004, 33:1348-1349.
    13. Younsi M, Aider A, Bouguelia A, Trari M: Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Solar Energy 2005, 78:574-580.
    14. Omeiri S, Gabes Y, Bouguelia A, Trari M: Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry 2008, 614:31-40.
    15. Shannon RD, Rogers DB, Prewitt CT: Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry 1971, 10:713-718.
    16. Shannon RD, Gumerman PS: Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry 1976, 38:699-703.
    17. Lalanne M, Barnabe A, Mathieu F, Tailhades P: Synthesis and thermostructural studies of a CuFe1-xCr xO2 delafossite solid solution with 0 ≤ × ≤ 1. Inorganic Chemistry 2009, 48:6065-6071.
    18. Zhao Tr, Hasegawa M, Takei H: Growth and characterization of CuFeO2 single crystals. Journal of Crystal Growth 1995, 154:322-328.
    19. Zhao TR, Hasegawa M, Koike M, Takei H: Crystal growth of CuFeO2 by the floating-zone method. Journal of Crystal Growth 1995, 148:189-192.
    20. Zhao TR, Hasegawa M, Takei H: Phase equilibrium of the Cu-Fe-O system under Ar, CO2 and Ar+0.5% O2 atmospheres during CuFeO2 single-crystal growth. Journal of Materials Science 1996, 31:5657-5663.
    21. Zhao TR, Hasegawa M, Takei H: Crystal growth and characterization of cuprous ferrite (CuFeO2). Journal of Crystal Growth 1996, 166:408-413.
    22. Mugnier E, Barnabe A, Tailhades P: Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 2006, 177:607-612.
    23. Kakihana M, Milanova MM, Arima M, Okubo T, Yashima M, Yoshimura M: Polymerized complex route to synthesis of pure Y2Ti2O7 at 750°C using yttrium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society 1996, 79:1673-1676.
    24. Arima M, Kakihana M, Nakamura Y, Yashima M, Yoshimura M: Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society 1996, 79:2847-2856.
    25. Kakihana M, Okubo T, Arima M, Nakamura Y, Yashima M, Yoshimura M: Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: Implication for formation of Sr-Ti heterometallic citric acid complex. Journal of Sol-Gel Science and Technology 1998, 12:95-109.
    26. Roy S, Sigmund W, Aldinger F: Nanostructured yttria powders via gel combustion. Journal of Materials Research 1999, 14:1524-1531.
    27. Hyeon T, Chung Y, Park J, Lee SS, Kim YW, Park BH: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. Journal of Physical Chemistry B 2002, 106:6831-6833.
    28. Marinescu G, Patron L, Carp O, Diamandescu L, Stanica N, Meghea A, Brezeanu M, Grenier JC, Etournea J: Polynuclear coordination compounds as precursors for CuFe2O4. Journal of Materials Chemistry 2002, 12:3458-3462.
    29. Shirane T, Kanno R, Kawamoto Y, Takeda Y, Takano M, Kamiyama T, Izumi F: Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics 1995, 79:227-233.
    30. Szilagyi PA, Madarasz J, Kuzmann E, Vertes A, Molnar G, Bousseksou A, Sharma VK, Homonnay Z: Thermal stability of the FeIIIEDTA complex in its monomeric form. Thermochimica Acta 2008, 479:53-58.
    31. Okamoto S: Crystallization and phase transformation of sodium orthoferrites. Journal of Solid State Chemistry 1981, 39:240-245.
    32. Coker VS, Bell AMT, Pearce CI, Pattrick RAD, van der Laan G, Lloyd JR: Time-resolved synchrotron powder X-ray diffraction study of magnetite formation by the Fe(III)-reducing bacterium Geobacter sulfurreducens. American Mineralogist 2008, 93:540-547.
    33. McQueen T, Huang Q, Lynn JW, Berger RF, Klimczuk T, Ueland BG, Schiffer P, Cava RJ: Magnetic structure and properties of the S=5/2 triangular antiferromagnet α-NaFeO2. Physical Review B - Condensed Matter and Materials Physics 2007, 76.
    34. El Ataoui K, Doumerc JP, Ammar A, Gravereau P, Fournes L, Wattiaux A, Pouchard M: Preparation, structural characterization and mossbauer study of the CuFe1-xVxO2 (0 ≤ x ≤ 0.67) delafossite-type solid solution. Solid State Sciences 2003, 5:1239-1245.

    QR CODE