簡易檢索 / 詳目顯示

研究生: 陳彥志
Yen-Jhih Chen
論文名稱: 以赤鐵礦奈米結構光陽極進行光電化學水分解之研究
The study of hematite nanostructure photoanodes on photoelectrochemical water splitting
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
林欣瑜
Hsin-Yu Lin
黃炳照
Bing-Joe Hwang
江志強
Jyh-Chiang Jiang
陳良益
Liang-Yih Chen
陳詩芸
Shih-Yun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 201
中文關鍵詞: 太陽能水分解產氫赤鐵礦奈米結構光陽極赤鐵礦/氧化鋅異質結構奈米柱光陽極
外文關鍵詞: photoelectrochemical solar water splitting, hematite nanocorals, hematite nanotubes, ZnO/α-Fe2O3 core/shell nanorods
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討赤鐵礦光陽極在太陽能水分解產氫的效能。由於電洞在赤鐵礦內的傳輸不佳以及赤鐵礦緩慢的氧化水反應速率影響了赤鐵礦的太陽能產氫轉化效率。為了改善赤鐵礦的產氫效能,本研究將致力於以改善材料表面型態及摻雜元素至赤鐵礦內提升光電流密度,並利用材料表面修飾及異質接面結構來降低赤鐵礦光陽極元件的起始電壓。首先以水熱法及陽極電化學沉積將赤鐵礦奈米珊瑚結構與奈米管等一維結構製備在透明導電玻璃上,並摻雜鈦元素至赤鐵礦內以提升載子傳輸速率。鈦摻雜赤鐵礦奈米珊瑚結構與奈米管光陽極的光電流密度分別為1.72 mA/cm2及1.66 mA/cm2,但兩者的起始電壓皆只在1.00 ~1.05 VRHE之間。為了達到在無外部偏壓的環境下驅動水分解系統的目標,將以磷酸鈷析氧觸媒及ZnFe2O4(ZFO)被覆層來進行表面修飾改善光陽極的起始電壓。經過表面修飾之後,鈦摻雜赤鐵礦奈米珊瑚結構與奈米管光陽極的光電流密度分別可提升至3.60 mA/cm2及2.85 mA/cm2,產氫轉化效率也可達到0.33 %與0.26 %,然而兩者的起始電壓皆只下降了0.2 V左右。為了有效降低起始電壓,本研究以濕式化學沉積法進行赤鐵礦/氧化鋅異質結構奈米柱光陽極的製備,其最適化條件的起始電壓可降低至0.25 VRHE。即使赤鐵礦/氧化鋅奈米柱光陽極的光電流密度降低至1.00 mA/cm2,其產氫轉化效率仍能保持在0.30 %。


    In this study, the application of hematite (α-Fe2O3) photoanodes on solar water splitting has been investigated. Due to poor photo-generated hole transport and transfer of hematite, the solar-to-hydrogen (STH) conversion is sluggish. To improve the STH performance, two solutions can be employed to solve the drawbacks. One is enhancing photocurrent density via morphology control and dopant elements, the other is reducing turn-on voltage via surface modification and heterojunction structure. Herein, one dimensional hematite nanostructures such as nanocorals (NCs) and nanotubes (NTs) have been synthesized via chemical bath deposition and anodic electrodeposition, respectively. Besides, Ti4+ ions were also doped into hematite photoanode to enhance the charge transport. The photocurrent density (at 1.23 VRHE) of Ti-doped hematite NCs and NTs photoanodes could achieve 1.72 mA/cm2 and 1.66 mA/cm2, respectively. However, the turn-on voltage of both was ca. 1.00 ~ 1.05 VRHE. To improve the solar water splitting system with low overpotential, both Ti-doped hematite photoanodes were decorated by ZnFe2O4 (ZFO) overlayer and Co–Pi oxygen evolution catalysts (OECs). The photocurrent density and STH efficiency of decorated Ti-doped hematite NCs and NTs could be furthermore increased to 3.60 mA/cm2 (0.33 %) and 2.85 mA/cm2 (0.26 %), respectively. However, the cathodic shift of turn-on voltage was only 0.2 V for both. To enhance the cathodic shift of turn-on voltage efficiently, ZnO/α-Fe2O3 core/shell nanorods (NRs) photoanode has been fabricated via wet chemical method. The optimized turn-on voltage can achieve 0.25 VRHE. Although the photocurrent density decreased to 1.00 mA/cm2, the STH efficiency could maintain around 0.30 %.

    中文摘要 I Abstract II Acknowledgement III Contents IV Figures VII Tables XX Chapter 1. Introduction 1 1-1 Recent Trends of Energy Consumption and CO2 Emissions 1 1-2 Solar Water Splitting for Hydrogen Generation 3 1-3 Crystalline Structure and Optoelectronic Properties of α-Fe2O3 8 1-4 α-Fe2O3 PEC Solar Water Splitting System 14 1-5 Motivation of Research 20 1-6 References 21 Chapter 2. Theory 28 2-1 Basis of Solid/Liquid Interface 28 2-1-1 Band Structures of Solid 28 2-1-2 Space Charge Region and Helmholtz Double Layer 31 2-1-3 Surface State of Metal Oxide Semiconductor 41 2-2 Solid/Liquid Interface of Photoelectrochemical System 43 2-3 Equivalent Circuit of Solid/Liquid Interface 49 2-4 References 62 Chapter 3. Experimental Section 66 3-1 Experimental Schematic Diagram 66 3-2 Chemical Reagents and Apparatus 66 3-2-1 Chemical Reagents 66 3-2-2 Apparatus 71 3-3 References 85 Chapter 4. The Study of Carrier Transfer Mechanism for Nanostructural Hematite Photoanode for Solar Water Splitting 86 4-1 Introduction 86 4-2 Experimental Section 87 4-2-1 Synthesis of α-Fe2O3 and Ti-doped α-Fe2O3 (Ti:Fe2O3) Photoanodes 87 4-2-2 Preparation of ZnFe2O4/Ti:Fe2O3 Heterojunction Photoanodes 87 4-2-3 Decoration of Co-Pi Oxygen Evolution Co-catalysts on ZnFe2O4/Ti:Fe2O3 Photoanode 87 4-2-4 Characteristics 88 4-3 Results and Discussion 89 4-3-1 Annealing Temperature Effect 89 4-3-2 The Influence of Added Amount of Ethanol 93 4-3-3 The Effect of Ti Doping process: Drop-and-anneal Process vs. Doping in Growth Process 97 4-3-4 Surface Treatment of Ti:Fe2O3 Photoanode 101 4-4 Conclusions 108 4-5 References 109 Chapter 5. Ti:Fe2O3 Nanotube Arrays Photoanodes via Anodic Electrodeposition for Solar Water Splitting 112 5-1 Introduction 112 5-2 Experimental Section 113 5-2-1 Synthesis of ZnO Nanorods 113 5-2-2 Synthesis of α-Fe2O3 Nanotubes 113 5-2-3 Preparation of Co-Pi/ZFO/Ti:Fe2O3 Nanotubes 114 5-2-4 Characteristics 114 5-3 Results and Discussion 115 5-3-1 Characterization of Fe2O3 Nanotubes 115 5-3-2 E-dep Time Effect on Performance of Ti:Fe2O3 Nanotubes Photoanode 119 5-3-3 The Influence of Length of Hematite Nanotubes 121 5-3-4 Surface Modification on Ti:Fe2O3 Nanotubes Photoanode 124 5-4 Conclusions 131 5-5 References 131 Chapter 6. Wet Chemical Method Fabrication of ZnO/α-Fe2O3 Core/Shell Nanorod Arrays for Solar Water Splitting 134 6-1 Introduction 134 6-2 Experimental Section 135 6-2-1 Synthesis of Vertical ZnO Nanorod Arrays on FTO Substrate 135 6-2-2 α-Fe2O3 Shell Layer Deposition on ZnO Nanorods 135 6-2-3 Characteristics 135 6-3 Results and Discussion 136 6-3-1 Characterization of ZnO/α-Fe2O3 Nanorods 136 6-3-2 Photoelectrochemical Properties of ZnO/α-Fe2O3 Nanorods 141 6-3-3 The Electric Properties and Space Charge Regions of α-Fe2O3 Shell Layers 144 6-3-4 The Stability of ZnO/α-Fe2O3 Nanorods Photoanode at Different pH Values 149 6-4 Conclusions 150 6-5 References 150 Chapter 7. Overall Conclusions 154 Chapter 8. Future Works 155 APPENDIX I. Effect of Ti Doping Process 156 APPENDIX II. Calculation of Photocurrent Density via IPCE Value 157 APPENDIX III. Calculation of Injection and Separation Efficiency 159 APPENDIX IV. Electrochemical Impedance Spectroscopy under Illumination 166 APPENDIX V. TEM Analysis and Histograms of Nanostructures Radial Sizes 170 APPENDIX VI. In-situ GC Analysis 172 APPENDIX VII. Curriculum Vitae 176

    1. Key Electricity Trends 2015 - Base on Monthly Data. (International Energy Agency, 2015).
    2. The Members and Partners of OECD, The Organization for Economic Co-operation and Development, http://www.oecd.org/about/membersandpartners/, Last Access Date: 2017.07.05.
    3. History of Hydropower, Office of Energy Efficiency & Renewable Energy, https://energy.gov/eere/water/history-hydropower, Last Access Date: 2017.07.11.
    4. Key OECD Energy and Emission Trends. (International Energy Agency, 2015).
    5. N. Z. Muradov, Energy & Fuels 12 (1), 41-48 (1998).
    6. K. Zeng and D. Zhang, Progress in Energy and Combustion Science 36 (3), 307-326 (2010).
    7. A. Ursua, L. M. Gandia and P. Sanchis, Proceedings of the IEEE 100 (2), 410-426 (2012).
    8. J. Wang, Energy 80, 509-521 (2015).
    9. T. Riis, E. F. H. Hagen, P. J. S. Vie and Ø. Ulleberg, in Hydrogen Production and Storage: R&D Priorities and Gaps (International Energy Agency, 2006), pp. 5-18.
    10. A. Fujishima and K. Honda, Nature 238 (5358), 37-38 (1972).
    11. X. Chen, S. Shen, L. Guo and S. S. Mao, Chemical Reviews 110 (11), 6503-6570 (2010).
    12. A. Kudo and Y. Miseki, Chemical Society Reviews 38 (1), 253-278 (2009).
    13. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, Journal of Materials Chemistry A 3 (6), 2485-2534 (2015).
    14. J. A. Turner, Science 285 (5428), 687-689 (1999).
    15. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne and J. Glasscock, International Journal of Hydrogen Energy 31 (14), 1999 (2006).
    16. D. R. Crow, Principles and Applications of Electrochemistry. (CRC Press, 1994).
    17. J. Kiwi and M. Grätzel, Journal of the American Chemical Society 101 (24), 7214-7217 (1979).
    18. E. A. Malinka, G. L. Kamalov, S. V. Vodzinskii, V. I. Melnik and Z. I. Zhilina, Journal of Photochemistry and Photobiology A: Chemistry 90 (2), 153-158 (1995).
    19. V. Heleg and I. Willner, Journal of the Chemical Society, Chemical Communications (18), 2113-2114 (1994).
    20. S. Grigoriev, P. Millet and V. Fateev, Journal of Power Sources 177 (2), 281-285 (2008).
    21. W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust and T. E. Mallouk, Journal of the American Chemical Society 131 (3), 926-927 (2009).
    22. B. Ma, J. Yang, H. Han, J. Wang, X. Zhang and C. Li, The Journal of Physical Chemistry C 114 (29), 12818-12822 (2010).
    23. K.-H. Chang, C.-C. Hu and C.-Y. Chou, Electrochimica Acta 54 (3), 978-983 (2009).
    24. J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen and Y. Inoue, Journal of the American Chemical Society 127 (12), 4150-4151 (2005).
    25. A. Galinska and J. Walendziewski, Energy & Fuels 19 (3), 1143-1147 (2005).
    26. H. Liu, J. Yuan and W. Shangguan, Energy & Fuels 20 (6), 2289-2292 (2006).
    27. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature Materials 8 (1), 76-80 (2009).
    28. M. Ni, M. K. Leung, D. Y. Leung and K. Sumathy, Renewable and Sustainable Energy Reviews 11 (3), 401-425 (2007).
    29. C. Liu, J. Tang, H. M. Chen, B. Liu and P. Yang, Nano Letters 13 (6), 2989-2992 (2013).
    30. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chemical Reviews 110 (11), 6446-6473 (2010).
    31. M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth and T. Hannappel, Nature Communications 6 (2015).
    32. Y. Hou, B. L. Abrams, P. C. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen and O. Hansen, Nature Materials 10 (6), 434-438 (2011).
    33. B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl and I. Chorkendorff, Angewandte Chemie International Edition 51 (36), 9128-9131 (2012).
    34. E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray and N. S. Lewis, Energy & Environmental Science 5 (11), 9653-9661 (2012).
    35. M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y. Z. Chen, J. Nah, T. S. Matthews, Y. L. Chueh and J. W. Ager, Angewandte Chemie International Edition 51 (43), 10760-10764 (2012).
    36. A. Heller and R. G. Vadimsky, Physical Review Letters 46 (17), 1153 (1981).
    37. D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai and K. Domen, Electrochemistry Communications 12 (6), 851-853 (2010).
    38. D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri and K. Domen, Applied Physics Express 3 (10), 101202 (2010).
    39. X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez and A. Cabot, Journal of the American Chemical Society 136 (26), 9236-9239 (2014).
    40. J. H. Park, S. Kim and A. J. Bard, Nano Letters 6 (1), 24-28 (2006).
    41. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, Nano Letters 2 (11), 1259-1261 (2002).
    42. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Letters 11 (7), 3026-3033 (2011).
    43. K. Sivula, F. L. Formal and M. Grätzel, Chemistry of Materials 21 (13), 2862-2867 (2009).
    44. J. Su, L. Guo, N. Bao and C. A. Grimes, Nano Letters 11 (5), 1928-1933 (2011).
    45. R. Abe, M. Higashi and K. Domen, Journal of the American Chemical Society 132 (34), 11828-11829 (2010).
    46. Y. Lin, G. Yuan, S. Sheehan, S. Zhou and D. Wang, Energy & Environmental Science 4 (12), 4862-4869 (2011).
    47. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel and K. Sivula, Chemical Science 2 (4), 737-743 (2011).
    48. M. F. Weber and M. J. Dignam, Journal of the Electrochemical Society 131 (6), 1258-1265 (1984).
    49. Reference Solar Spectral Irradiance: Air Mass 1.5, National Renewable Energy Laboratory, http://rredc.nrel.gov/solar/spectra/am1.5/, Last Access Date: 2017.07.05.
    50. M. Grätzel, Nature 414 (6861), 338 (2001).
    51. A. Kudo and Y. Miseki, Chemical Society Reviews 38 (1), 253-278 (2009).
    52. R. Abe, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11 (4), 179-209 (2010).
    53. R. Zboril, M. Mashlan and D. Petridis, Chemistry of Materials 14 (3), 969-982 (2002).
    54. U. Schwertmann, in Encyclopedia of Soil Science (Springer, 2008), pp. 363-369.
    55. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. (John Wiley & Sons, 2003).
    56. L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren and J. Guo, Advanced Materials 17 (19), 2320-2323 (2005).
    57. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych and M. Gratzel, Journal of the American Chemical Society 132 (21), 7436-7444 (2010).
    58. L. A. Marusak, R. Messier and W. B. White, Journal of Physics and Chemistry of Solids 41 (9), 981-984 (1980).
    59. A. Galuza, A. Beznosov and V. Eremenko, Low Temperature Physics 24, 726-729 (1998).

    QR CODE