簡易檢索 / 詳目顯示

研究生: 邱郁棠
Yu-Tang Qiu
論文名稱: 共濺鍍法製備銅銦鎵硒化物薄膜及其無硫化鎘太陽能電池元件
Preparation and analysis of Cu(In,Ga)Se2 thin-film made by co-sputtering for CdS-free solar cell device
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
none
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 131
中文關鍵詞: 銅銦鎵硒化物硒化銅銦鎵薄膜太陽能電池無硫化鎘共濺鍍法氮化銦鎵
外文關鍵詞: CdS-free
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,隨著能源危機的出現,許多研究者也紛紛投入CIGSe薄膜太陽能電池的相關研究。在此領域之中,時常會使用硫化鎘以及氧化鋅作為太陽能電池的n型半導體層,然而,硫化鎘本身含有毒性,因此本實驗要利用GaN以及InGaN來取代。
本實驗是利用共濺鍍金屬的方式,製備出CIGSe的前驅物薄膜,接著利用不同的溫度進行硒化退火。藉由掃描式電子顯微鏡(FE-SEM)、能量散射光譜儀(EDS)、X光繞射分析儀(XRD)、與霍爾量測等來分析薄膜性質。之後利用濺鍍法製備不同的含銦比例的GaN薄膜做為太陽能電池元件中的n型半導體層,最後使用擬太陽光測試儀器來測試其電池的光電轉換效率。
實驗結果顯示,利用共濺鍍法以及二階段600℃硒化反應製備CIGSe薄膜,經由FE-SEM、EDS以及XRD分析可得知此薄膜為單相CuIn0.7Ga0.3Se2結構,其晶粒最佳尺寸約為1.0 ~1.5 μm。以結構A製得之元件,得到3.07%之光電轉換效率。接著以利用RF濺鍍法製備In0.15Ga0.85N薄膜替代CdS為太陽能電池元件的緩衝層材料,無硫化鎘的太陽能電池結構I得到最佳的結果,但僅1.04%之光電轉換效率。


In recent years, confronting with the problem of energy crisis, Cu(InGa)Se2 or CIGSe thin-film solar cells are gradually getting researchers’ attentions. In this field, solar cell device almost uses CdS as a buffer layer and ZnO as a n type one. Because CdS is toxic, GaN and InGaN in this work have been taken to replace CdS/ZnO for designing different solar cell structures.
In the study, CIGSe precursor thin films were prepared by sputtering, followed by selenization with different annealing temperatures. The characterizations of thin films were analyzed by field-emission scanning electron microscopy (FE-SEM) epuipped with an energy dispersive X-ray spectrometer (EDS), X-ray diffractometry (XRD), and Hall measurement. Different Indium contents for InxGa1-xN that were used as n type layers for solar cell devices were also prepared by sputtering. The performance of the devices was then evaluated under the standard AM 1.5 illumination.
The results showed that CIGSe thin films after made by co-sputtering and a two-step selenization process at 600oC had better surface morphology with the grain size of 1.0 – 1.5 m. FE-SEM, XRD and EDS analyses demonstrated that the films were single phase with the close component of CuIn0.7Ga0.3Se2 even selenization at different temperatures. Then, InxGa1-xN thin films made by RF sputtering replaced CdS as the buffer layer for the solar cell structure. CdS-free CIGSe/In0.15Ga0.85N/ZnO solar cell with the structure I had the best conversion efficiency of 1.04% conversion, while it was 3.07% for the traditional CIGSe/CdS/ZnO solar cell structure.

第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的基本介紹 2 1-3 太陽能電池的種類及發展 2 1-4 各種薄膜太陽能電池 4 1-4-1 矽薄膜太陽能電池(Silicon solar cell) 4 1-4-2 碲化鎘薄膜太陽能電池 (Cadmium Telluride thin film solar cell 4 1-4-3 染料敏化太陽能電池 (Dye-sensitized solar cell) 5 1-4-4 硒化銅銦鎵薄膜太陽能電池 (Copper Indium Gallium Selenide solar cell) 6 1-5 研究動機與目的 7 第二章 基礎理論與文獻回顧 9 2-1 太陽能電池工作原理 9 2-1-1 p-n接合二極體 9 2-1-2 光伏特效應 (Photovoltaic effect ) 10 2-1-3 太陽能電池的效率 11 2-1-4 太陽能電池等效電路 14 2-2 CIGSe薄膜太陽能電池基本構造 16 2-2-1 基板 17 2-2-2 底電極 (back contact) 18 2-2-3 吸收層 (absorber layer) 19 2-2-4 緩衝層(buffer layer) 28 2-2-5 本質氧化鋅層(intrinsic Zinc Oxide layer) 43 2-2-6 透明導電層(transparent conductive layer) 43 2-2-7 上電極(top contact) 44 第三章 實驗步驟 45 3-1 實驗設備說明 45 3-1-1 DC直流式濺鍍機 45 3-1-2 RF射頻式濺鍍機 47 3-1-3 真空熱壓機 48 3-1-4 高溫真空管型爐 48 3-1-5 化學浴相關儀器設備 49 3-2 實驗藥品和氣體 50 3-3 實驗流程 51 3-3-1 基板的選擇與清洗 51 3-3-2 鉬(Mo)底電極的製備 52 3-3-3 吸收層粉體製備 52 3-3-4 CIGSe靶材製備 52 3-3-5 CIGSe薄膜製備 53 3-3-6 薄膜硒化退火 53 3-3-7 硫化鎘薄膜製備 54 3-3-8 氧化鋅薄膜製備 55 3-3-9 氮化(銦)鎵粉體製備 56 3-3-10 氮化(銦)鎵靶材製備 56 3-3-11 氮化(銦)鎵n型半導體薄膜製備 57 3-3-12 透明導電層製備 58 3-3-13 上電極製備 58 3-4 實驗參數 60 3-5 分析儀器 64 3-5-1 X光繞射分析儀 (X-ray Diffractometer,XRD) 64 3-5-2 場發射掃描式電子顯微鏡 (Field Emission of Scanning Electron Microscope,FE-SEM) 65 3-5-3 霍爾效應量測系統 (Hall Effect Measurement System) 66 3-5-4 太陽能電池量測系統 67 第四章 結果與討論 68 4-1 CIGSe薄膜SEM表面形貌觀察 68 4-2 CIGSe薄膜EDS成分分析 71 4-3 CIGSe薄膜XRD結構性質分析 74 4-4 CIGSe薄膜霍爾電特性分析 77 4-5 CIGSe薄膜太陽能電池的製備與分析 79 4-5-1 傳統CIGSe太陽能電池結構 - 結構A 79 4-5-2 新型CIGSe/單層In0.15Ga0.75N太陽能電池結構 - 結構B 82 4-5-3 CIGSe/單層InxGa1-xN太陽能電池結構 - 結構B、結構C、結構D 85 4-5-4 新型CIGSe/雙層InxGa1-xN太陽能電池結構 - 結構E、F、G 90 4-5-5 新型CIGSe/InxGa1-xN/ZnO太陽能電池結構 - 結構H、I、J 99 4-5-6 含CdS緩衝層的新型CIGSe太陽能電池結構 - 結構K、L 104 第五章 結論 110

[1]巴黎協議
[2]林明獻,「太陽能電池技術入門」,全華圖書股份有限公司 (2008)
[3]顧鴻濤,「太陽電池元件導論-材料、元件、製程、系統」,全威圖書股份有限公司 (2009)
[4]郭浩中、賴芳儀、郭守義、蔡閔安,「太陽光電技術」,五南出版股份有限公司 (2012)
[5]柯志昇,「綠色能源當道-全球太陽能電池市場與產業發展趨勢分析」 (2008)
[6] S. H. Park, J. S. Cho, K. H. Yoon, Photo-induced degradation of a-Si:H thin film depending on electrical load conditions, Electronic Materials Letters December, 7 (2011) 323–325.
[7] X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Solar Energy, 77 (2004) 803–814.
[8] O’Regan, B. & Graぴtzel, M, A low cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films, Nature, 353 (1991) 737–740.
[9] L. L. Kazmerski, F. R. White and G. K. Morgan, Thin‐film CuInSe2/CdS heterojunction solar cells, Applied Physics Letters, 29 (1976) 268–270.
[10] R. A. Mickelsen, W. S. Chen, Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell, Conference Record of the IEEE Photovoltaic Specialists Conference (1981) 800–804.
[11]林明獻,「太陽電池技術入門」,全華科技圖書股份有限公司 (2008)
[12] S.O. Kasap, Optoelectronics (Prentice Hall) (1999)
[13]黃哲瑄,以濺鍍/無毒硒化製程製作銅銦鎵硒薄膜太陽能電池,國立交通大學,照明與能源光電研究所,碩士學位論文 (2011)
[14] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Solar Energy 77 (2004) 685–695.
[15] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki, Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency, Applied Physics Letters, 93 (2008) 124105.
[16] A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, S. Perraud, CIGS solar cells on flexible ultra-thin glass substrates: Characterization and bending test, Thin Solid Films 592 (2015) 99–104.

[17] D. Greiner, J. Lauche, S. Hamdt, R. Klenk, R. Schlatmann, C. A. Kaufmann, Optimizing the growth path for Cu(In,Ga)Se2 thin films co-evaporated at low temperatures on flexible polyimide foil, Photovoltaic Specialist Conference, 2015 IEEE 42nd (2015).
[18] A. Chirila, P. Bloesch, S. Seyrling, A. Uhl, S. Buecheler, F. Pianezzi, C. Fella, J. Perrenoud, L. Kranz, R. Verma, D. Guettler, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, D. Bre´maud, A.N. Tiwari, Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%, Progress in Photovoltaics Research and Applications,19 (2011) 560–564.
[19] F. Pianezzi, A. Chirilă, P. Blösch, S. Seyrling, S. Buecheler, L. Kranz, C. Fella, A. N. Tiwari, Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier, Progress in Photovoltaics Research and Applications, 20 (2012) 253–259.
[20] T. Wadaa, N. Kohara, S. Nishiwaki, T. Negami, Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells, Thin Solid Films, 387 (2001) 118–122.
[21] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films, 480–481 (2004) 433–438.
[22] J. M. Merino, J. L. Martin de Vidales, S. Mahanty, R. Diaz, F. Rueda, M. Leon, Composition effects on the crystal structure of CuInSe2, Journal of Applied Physics, 80 (1996) 5610–5616
[23]邱育杉,不同靶材濺鍍與硒化製備硒化銅銦鎵薄膜及其特性分析,國立台灣科技大學,材料科所與工程所,碩士學位論文 (2014)
[24] B. J. Stanbery, Copper Indium Selenides and Related Materials for Photovoltaic Devices, Critical Reviews in Solid State and Materials Sciences, 27 (2002) 73–117.
[25] G. Y. Kim, W. Jo, H. J. Jo, D. H. Kim, J. K. Kang, Macroscopic and microscopic electrical properties of Cu(In,Ga)Se2 thin-film solar cells with various Ga/(In+Ga) contents, Current Applied Physics, 15 (2015) S44–S50.
[26] M.G. Faraj, K. Ibrahim, A. Salhin, Effects of Ga concentration on structural and electrical properties of screen printed-CIGS absorber layers on polyethylene terephthalate, Materials Science in Semiconductor Processing, 15 (2012) 206–213.
[27] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, 19 (2011) 894 –897.
[28] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, physica status solidi, 9 (2015) 28–31.
[29] X. L. Zh, Y. M. Wang, Z. Zhou, A. M. Li, L. Zhang, F. Q. Huang, 13.6%-efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and CuSe targets, Solar Energy Materials and Solar Cells, 113 (2013) 140–143.
[30] R. N. Bhattacharya, M. K. Oh, Y. Kim, CIGS-based solar cells prepared from electrodeposited precursor films, Solar Energy Materials and Solar Cells, 98 (2012) 198–202.
[31] T. K. Todorov, O. Gunawan, T. Gokmen, D. B. Mitzi, Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Progress in Photovoltaics Research and Applications, 21 (2013) 82–87.
[32] M. Y. Kim, G. Kim, J. Kim, J. H. Park, D. Lim, Structural and electrical properties of co-evaporated Cu(In,Ga)Se2 thin films with varied Cu contents, Thin Solid Films, 546 (2013) 308–311.
[33] S. Zhang, L. Wu, R. Yue, Z. Yan, H. Zhan, Y. Xiang, Effects of Sb-doping on the grain growth of Cu(In, Ga)Se2 thin films fabricated by means of single-target sputtering, Thin Solid Films, 527 (2013) 137–140.
[34] C. H. Chen, T. Y. Lin, C. H. Hsu, S. Y. Wei, C. H. Lai, Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process, Thin Solid Films, 535 (2013) 122–126.
[35] R.N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras1, R. N. Noufi, J. R. Sites, 15.4% CuIn1-xGaxSe2-Based Photovoltaic Cells from Solution-Based Precursor Films, Thin Solid Films, 361-362 (2000) 396–399.
[36] M. A.Contreras, M. J.Romero, B. To, F. Hasoon, R. Noufi, S. Ward, K. Ramanathan, Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se -based 2 solar cells, Thin Solid Films, 403–404 (2002) 204–211.
[37] H. Sim, J. Lee, S. Cho, E. S. Cho, S. J. Kwon, A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application, Journal of Semiconductor Technology and Science, 15 (2015) 267–275.
[38] D. Abou-Ras, G. Kostorza, A. Romeo, D. Rudmann, A.N. Tiwari, Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells, Thin Solid Films, 480–481 (2004) 118–123.
[39] A. Goudarzi, G. M. Aval, R. Sahraei, H. Ahmadpoor, Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells, Thin Solid Films, 516 (2008) 4953–4957
[40] T. Nakada, M. Mizutani, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers, Japanese Journal of Applied Physics, 41 (2002) 165–167.
[41] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, High-Efficiency Copper Indium Gallium Diselenide (CIGS) Solar Cells with Indium Sulfide Buffer Layers Deposited by Atomic Layer Chemical Vapor Deposition (ALCVD), Progress in Photovoltaics Research and Applications, 11 (2003) 437–443.
[42] S. Spiering, D Hariskos, M. Powalla, N. Naghavi, D. Lincot, Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD, Thin Solid Films, 431–432 (2003) 359–363.
[43] D. Braunger, D. Hariskos, T. Walter, H.W. Schock, An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer, Solar Energy Materials and Solar Cells, 40 (1996) 97-102.
[44] M. A. Mughal, R. Engelken, R. Sharma, Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells, Solar Energy, 120 (2015) 131–146.
[45] T. Torndahl, C. Platzer-Bjorkman, J. Kessler, M. Edoff, Atomic Layer Deposition of Zn1-xMgxO Buffer Layers for Cu(In,Ga)Se2 Solar Cells, Progress in Photovoltaics Research and Applications, 15 (2007) 225–235.
[46] T. Torndahl, E. Coronel, A. Hultqvist, C. Platzer-Bjorkman, K. Leifer, M. Edoff, Atomic Layer Deposition of Zn1-xMgxO Buffer Layers for Cu(In,Ga)Se2 Solar Cells, Photovoltaics Research and Applications, 17 (2009) 115–125.
[47] A. Ennaoui, S. Siebentritt, M.Ch.Lux-Steiner, W. Riedl, F. Karg, High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers, Solar Energy Materials & Solar Cells, 67 (2001) 31-40.
[48] D. Hariskos, R. Menner, P. Jackson, S. Paetel1, W. Witte, W. Wischmann, M. Powalla, L. Bürkert, T. Kolb, M. Oertel, B. Dimmler, B. Fuchs, New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells, Progress in Photovoltaics Research and Applications, 20 (2012) 534–542.
[49] J. H. Kim, D. H. Shin, H. S. Kwon, B. T. Ahn, Growth of Sn(O,S)2 buffer layers and its application to Cu(In,Ga)Se2 solar cells, Current Applied Physics, 14 (2014) 1803–1808.
[50] X. Ni, Y. Fu, Y.T. Moon, N. Biyikli, H. Morkoç, Optimization of (1 1-2 0) a-plane GaN growth by MOCVD on (1-1 0 2) source r-plane sapphire, Journal of Crystal Growth, 290 (2006) 166–170.
[51] H. W. Kim, N. H. Kim, Preparation of GaN films on ZnO buffer layers by rf magnetron sputtering, Applied Surface Science, 236 (2004) 192–197.
[52] H. Shinoda, N. Mutsukura, Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy, Thin Solid Films, 516 (2008) 2837–2842.
[53]蔡妙嬋,氮化銦鎵藍光發光二極體極化效應之研究,國立彰化師範大學,照明與能源光電研究所,碩士學位論文 (2008)
[54]李成哲,反應式濺鍍法製備氮化鎵為主之III族氮化物薄膜及其鎂摻雜之特性探討,材料科所與工程所,碩士學位論文 (2014)
[55] S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, B. Shen, Temperature-controlled epitaxy of In x Ga1- x N alloys and their band gap bowing, Journal of Applied Physics, 110, (2011) 113514.
[56] Y. Wang, H. Huang, X. Meng, F. Yang, J. Nan, Q. Song, Q. Huangb, Y. Zhao, X. Zhang, Electrical and structural properties of annealed ZnO:B thin films, Journal of Alloys and Compounds, 636 (2015) 102–105.
[57] M. C. Jun, S. U. Park, J. H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films, Nanoscale Research Letters ,140 (2012) 166–176.
[58] Y. S. Kim, S. B. Heo, H.M. Lee, Y. J. Lee, I.S. Kim, M. S. Kang, D. H. Choi, B. H. Lee, M. G. Kim, D. Kim, Effects of electron irradiation on the properties of GZO films deposited with RF magnetron sputtering, Applied Surface Science, 258 (2012) 3903–3906.
[59] C. H. Chen, W. C. Shih, C. Y. Chien, C. H. Hsu, Y. H. Wu, C. H. Lai, A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply, Solar Energy Materials and Solar Cells, 103 (2012) 25–29.

QR CODE