簡易檢索 / 詳目顯示

研究生: 楊賢
Sian Yang
論文名稱: 製造與特性量測以矽擴散製作的氮化鎵二極體與光電晶體
Fabrication and characterization of GaN-based diodes and phototransistors formed by silicon diffusion process
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 葉秉慧
Pinghui Sophia Yeh
李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 氮化鎵矽擴散光偵測器光電晶體
外文關鍵詞: GaN, silicon diffusion, photodetector, phototransistor
相關次數: 點閱:263下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文我們製作了近紫外光p-i-n偵測器與異質接面光電晶體(Heterojunction phototransistors, HPTs)。兩種光偵測器都是設計了兩種形狀,有方型與長型。異質接面光電晶體是在商業用光二極體(Light-emitting-diode, LED)結構晶圓以矽擴散的方式將最上層一部份的P-AlGaN反轉為N-AlGaN,形成了n-p-i-n結構的光電晶體。反轉得到的二極體做特性量測並比較異質接面光電晶體與p-i-n光偵測器的響應率。
    元件在峰值波長384 nm,入射光能量為15.9 μW/cm2時,會有最高的響應率。方形p-i-n光偵測器的元件當逆向偏壓為4.5 V,在峰值的外部量子效率(External quantum efficiency, EQE)為27.6%,對應的響應率為0.085 A/W;而長型p-i-n光偵測器的元件在峰值的外部量子效率為29.1%,對應的響應率為0.09 A/W。方形n-p-i-n光電晶體光偵測器的元件在集極-射極外加偏壓4.5 V(p-i-n接面為逆向偏壓),在峰值的外部量子效率為30%,對應的響應率為0.093 A/W;而長型n-p-i-n光電晶體光偵測器在峰值的外部量子效率為32.1%,對應的響應率為0.095 A/W。方型與長型的元件結果類似,趨勢一致。
    以矽擴散製作的氮化鎵二極體有二極體特性,但因PN接面相當接近表面,空乏區有表面與深層能階。關於光電晶體光偵測器,發現偏壓加到4.5 V,增益仍非常的小,我們認為是因為LED磊晶有一層電子阻擋層(Electron blocking layer, EBL),使得射極電子不能穿隧(Tunneling)至集極,沒有電流放大效果,外部量子效率比p-i-n結構光偵測器僅略高一點。


    In this paper, we fabricated AlGaInN-based near-ultraviolet (UV) p-i-n photodetectors and heterojunction phototransistors (HPTs). They were designed into two shapes which were square and rectangle. The HPTs on a commercial wafer with a light-emitting-diode (LED) epitaxial structure by employing silicon diffusion to convert a part of the top P-AlGaN layer into an N-AlGaN layer, resulting in an n–p–i–n phototransistor structure. We characterized the GaN-based diodes formed by silicon diffusion process and compared the responsivities of the HPTs and the p-i-n photodetectors.
    The devices were illuminated using an incident light intensity of 15.9 μW/cm2 at the fixed wavelength of 384 nm at which the responsivity was the highest. The square p-i-n photodetectors with the reverse bias of 4.5 V, the external quantum efficiency (EQE) value at the peak wavelength was 27.6%, corresponding to a responsivity of 0.085 A/W. The rectangular p-i-n photodetectors with the reverse bias of 4.5 V, the EQE value at the peak wavelength was 29.1%, corresponding to a responsivity of 0.09 A/W. The square n-p-i-n phototransistors with the VCE of 4.5 V (p-i-n junction was the reverse bias), the EQE value at the peak wavelength was 30%, corresponding to a responsivity of 0.093 A/W. The rectangular n-p-i-n phototransistors with the VCE of 4.5 V, the EQE value at the peak wavelength was 32.1%, corresponding to a responsivity of 0.095 A/W. The results indicated the square and rectangular devices were similar.
    The GaN-based diodes formed by silicon diffusion process due to the PN junction extremely closing to the surface, which resulted in generating the surface level and deep level in the depletion. The HPTs increased the VCE of up to 4.5 V, the EQE value at the peak wavelength was still low. We thought the reason that the electrons in the emitter couldn’t tunnel through the collector was the electron blocking (EBL) in the LED structure. And the HPTs couldn’t amplify the current gain so the EQE value of the HPTs was just a bit higher than that of the p-i-n photodetectors.

    摘要 i Abstract iii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 UV-A光電晶體偵測器文獻回顧與研究動機 3 第二章 光偵測器理論基礎 15 2.1 光偵測器工作原理 15 2.2 光偵測器架構分類 18 2.2.1 p-n接面光電二極體 18 2.2.2 p-i-n接面光電二極體 20 2.2.3 蕭基位障光電二極體 23 2.2.4 雪崩型光電二極體 25 2.2.5 異質接面光電二極體 28 2.2.6 光電晶體 30 2.3 光偵測器檢測參數 32 2.3.1 量子效率(Quantum Efficiency, QE) 32 2.3.2 響應率(Responsivity, R) 35 2.3.3 響應速度(Response Speed) 35 2.3.4 拒斥比(Rejection Ratio) 36 2.3.5 雜訊等效功率(Noise Equivalent Power, NEP) 36 2.3.6 歸一化檢測率(normalized detectivity, D*) 37 第三章 元件設計與儀器介紹 38 3.1 光偵測器元件設計 38 3.2 元件製程 43 3.2.1 活化製程(Activation) 44 3.2.2 絕緣製程(Isolation) 45 3.2.3 高台圖型製程(Mesa) 46 3.2.4 矽擴散製程(Silicon diffusion) 48 3.2.5 二氧化矽絕緣層沉積 50 3.2.6 ITO透明導電層沉積 50 3.2.7 N型電極沉積 51 3.3 製程儀器介紹 52 3.3.1 電漿增強式化學氣相沉積(Plasma-enhanced chemical vapor deposition, PECVD) 52 3.3.2 旋轉塗佈機(Spin coater) 53 3.3.3 光罩對準機(Mask aligner) 54 3.3.4 感應耦合電漿反應式離子蝕刻機(Inductively-coupled plasma reactive ion etching, ICP-RIE) 56 3.3.5 電子束蒸鍍機(E-beam evaporator) 57 3.3.6 快速升溫退火爐(Rapid thermal annealing system, RTA) 58 3.3.7 射頻濺鍍機(Radio frequency sputter, RF sputter) 59 3.4 量測儀器介紹 61 3.4.1 光激發螢光(Photoluminescence, PL)量測系統 61 3.4.2 薄膜厚度輪廓測度儀(Alpha step) 62 3.4.3 太陽光模擬光源(Solar simulator)I-V量測 63 3.4.4光電轉換效率量測系統(Incident photon-to-electron conversion efficiency, IPCE) 63 第四章 結果與討論 65 4.1 氮化鎵p-i-n光偵測器量測結果與討論 66 4.1.1 氮化鎵p-i-n光偵測器暗電流量測 66 4.1.2 氮化鎵p-i-n光偵測器之外部量子效率量測討論 67 4.1.3 氮化鎵p-i-n光偵測器在不同偏壓下之響應率 71 4.2 氮化鎵光電晶體光偵測器量測結果與討論 74 4.2.1 氮化鎵光電晶體光偵測器暗電流量測 74 4.2.2 氮化鎵光電晶體光偵測之外部量子效率量測 82 4.2.3 氮化鎵光電晶體光偵測器在不同偏壓下之響應率 87 第五章 結論與未來展望 90 5.1 結論 90 5.2 未來展望 92 參考文獻 93

    [1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny-GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916-921, Oct. 2008.
    [2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.
    [3] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, “Low-noise back-illuminated AlXGa1-X N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 538-545, Apr. 2001.
    [4] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,’’ Appl. Phys. Lett., vol. 94, 221109, Jun. 2009.
    [5] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C.Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,’’ Appl. Phys. Lett. vol. 77, 2810, Feb. 2000.
    [6] Yi-Ting Huang, Pinghui S. Yeh, Yen-Hsiang Huang, Yu- Ting Chen, Chih-Wei Huang, Cong Jun Lin, and Wenchang Yeh, “High Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing, ’’ IEEE Photon Technol Lett, vol. 28, no. 6, pp. 605-608, Mar. , 2016.
    [7] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett. vol. 73, no. 17, pp.978-980, Aug. 1998.
    [8] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, and S. Verghese, “GaN avalanche photodiodes grown by hydride vaporphase epitaxy,” Appl. Phys. Lett.75, 3485, Oct. 1999.
    [9] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes,’’ IEEE J. Quantum Electron., vol. 36, no. 12, pp. 1389-1391, Dec. 2000.
    [10] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer,” Jpn. J. Appl. Phys. 40, L498, May 2001.
    [11] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 011112, Jun. 2006.
    [12] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD,” IEEE Photon. Technol. Lett. , vol. 19, no. 21, pp. 1744-1746, Nov. 2007.
    [13] M. L. Lee, J. K. Sheu, Yung-Ru Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio”, Appl. Phys. Lett. 92, 053506, Feb. 2008.
    [14] Shen, S-C, Kao, T-T, Kim, H-J, Lee, Y-C, Kim, J, Ji, M-H, Ryou, J-H, Detchprohm, T, Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol.8, 032101, Feb. 2015.
    [15] Tsung-Ting Kao, Jeomoh Kim, Theeradetch Detchprohm, Russell D. Dupuis, “High-Responsivity GaN/InGaN Heterojunction Phototransistors”, IEEE Photon Technol Lett, vol. 28, no. 19, pp. 2035-2038, Jun. 2016.
    [16] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li ”, Optimization of GaN/InGaN Heterojunction Phototransistor”, IEEE Photon Technol Lett, vol. 29, no. 4, pp. 373-376, Feb. 2017.
    [17] S. O. Kasap, 光電半導體元件 Optoelectronics and Photonics Principles and Practices, 全威圖書有限公司,台北,2006。
    [18] 許登坡,「氮化鎵光電晶體之研發」,國立台灣科技大學電子工程所碩士學位論文,台北,2016。
    [19] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
    [20] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
    [21] Ting Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal ultraviolet photodetectors,” Electronics Letters, vol. 36, no. 18, pp. 1581-1583, Aug. 2000.
    [22] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, Feb. 1997.
    [23] S. M. Sze and Kwork K.Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, 1981.
    [24] 葉秉慧、余孟純、林家煥、黃景勤,”一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國專利發明第I 563756號,自2016年12月21日至2034年12月23日。專利所有權人: 國立台灣科技大學。
    [25] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, Feb. 1992.
    [26] H. Jiang, T. Egawa, H. Ishikawa, “AlGaN Solar-Blind Schottky Photodiodes Fabricated on 4H-SiC,” IEEE Photon. Technol. Lett., vol. 18, no. 12, Jun. 2006.
    [27] J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, ”Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEE Electron Device Lett., vol. 31, no. 10, Oct. 2010.
    [28] 羅正忠,半導體工程先進製程與模擬,普林斯頓國際有限公司,台北,2011。
    [29] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014。
    [30] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013。
    [31] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [32] 黃義廷,「表面結構化對氮化銦鎵p-i-n光感測器特性之影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2015。

    QR CODE