簡易檢索 / 詳目顯示

研究生: Nguyen Tan Tung
Nguyen Tan Tung
論文名稱: 採用氮化鎵元件之主動箝位三角形電流模式 H 橋轉換器
H – Bridge Converter with Active - Clamp Triangular Current Mode Control using GaN Devices
指導教授: 邱煌仁
Huang - Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
張佑丞
Yu-Chen Chang
劉宇晨
Yu-Chen Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 84
中文關鍵詞: LLC-DCX 轉換器零電壓切換主動箝位-三角形電流模式H– 橋轉換器三 角形電流模式
外文關鍵詞: LLC-DCX converter, Zero voltage switching (ZVS), Active clamp triangular current mode (CL – TCM), H – bridge converter,, Triangular current mode (TCM).
相關次數: 點閱:183下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LLC-DCX 轉換器通常被用來當作中間級轉換器 (IBC),可提供固定的電壓轉換比以及電
    器隔離,但不具備調節輸出電壓的功能。為了達成調節輸出電壓,兩級式的架構被提出,
    在 LLC-DCX 轉換器串接一非隔離的直流-直流轉換器。本論文提出一電路拓樸-又稱為 H
    橋轉換器-負責在兩級式架構中扮演後級的非隔離的直流-直流轉換器。本論文提出的架構
    實現主動箝位-三角形電流模式 (CL-TCM),因此具有其所有優點。此外,此轉換器不僅
    可以工作在升壓模式 (boost mode),亦可工作在降壓模式 (buck mode)。為了使輸出電壓
    為定值,本論文提出一種新的控制演算法,該演算法透過感測訊號計算出開關的責任週期
    以及頻率,同時可應用在升壓模式及降壓模式。電壓迴路以及其補償器被設計用來控制主
    開關的責任週期。為了實現直接的前饋控制,詳細介紹操作在升壓模式及降壓模式的中斷
    服務程序(ISR)以及數位訊號處理器(DSP)的動作。最終實現電路硬體雛形,實驗結果驗證
    了提出的演算法動作以及其有效性。
    關鍵字: LLC-DCX 轉換器,零電壓切換,主動箝位-三角形電流模式, H– 橋轉換器,三
    角形電流模式。


    The LLC-DCX converter can be used as an intermediate bus converter (IBC) to provide the fixed
    voltage conversion ratio and isolation but cannot regulate the output voltage at a desired value. For
    regulating the output voltage, the second stage structure was proposed with the high efficiency
    front-end LLC-DCX converter feeds into a second-stage non-isolated DC-DC converter. This
    thesis proposes a converter topology – also called H-bridge converter – which serves a secondstage non-isolated DC-DC converter in the second stage structure. The proposed converter is
    implemented with active – clamp triangular current mode (CL-TCM) and therefore it possesses all
    benefits of CL-TCM operation. In addition, the proposed converter can work not only as a step-up
    converter (boost mode) but also as a step-down converter (buck mode). Furthermore, to control
    the output voltage at a constant value, the new control algorithm is proposed with a calculation
    unit for both buck mode and boost mode which uses sensing signals for calculating the switching frequency and duty cycle of a specific switch. Voltage mode control loop is designed with a
    compensator for generating the suitable duty cycle for main switch. For straightforward control
    method implementation, the detailed time schemes of interrupt service routine (ISR) and
    background loop in digital control processor (DSP) for both buck and boost mode are introduced.
    Finally, the circuit prototype is built and the experimental results are given to verify the principle of operation and the effectiveness of the new control method for the proposed converter.
    Index terms: LLC-DCX converter, zero voltage switching (ZVS), active clamp triangular current
    mode (CL – TCM), H – bridge converter, triangular current mode (TCM).

    摘要.......................................................................................................................................................I ABSTRACT ....................................................................................................................................... II ACKNOWLEDGEMENT ...............................................................................................................III CONTENTS......................................................................................................................................IV LIST OF FIGURES ......................................................................................................................VIII LIST OF TABLES ......................................................................................................................... XII LIST OF ABBREVIATIONS.......................................................................................................XIII INTRODUCTION.................................................................................................. 1 1.1 Background and Objectives. ..................................................................................................... 1 1.2 Chapter Overview. ..................................................................................................................... 2 NON – ISOLATED DC – DC CONVERTER TOPOLOGIES.......................... 4 2.1 Non – isolated Conventional DC –DC Converter.................................................................... 4 2.1.1 Conventional Buck Converter.............................................................................................. 4 2.1.1.1 Circuit Description. ...................................................................................................... 4 2.1.1.2 Steady State DC Analysis. ........................................................................................... 4 2.1.2 Conventional Boost Converter. ............................................................................................ 6 2.1.2.1 Circuit Description. ...................................................................................................... 6 2.1.2.2 Steady State DC Analysis. ........................................................................................... 7 2.2 Synchronous non – isolated DC – DC Converter.................................................................... 8 2.2.1 Synchronous Buck Converter............................................................................................... 8 2.2.1.1 Synchronous Buck Converter in Continuous Conduction Mode (CCM). ................. 10 2.2.1.2 Synchronous Buck Converter in Synchronous Conduction Mode (SCM). ............... 12v 2.2.1.3 Synchronous Buck Converter in Triangular Current Mode (TCM)........................... 15 2.2.2 Synchronous Boost Converter............................................................................................ 16 2.2.2.1 Synchronous Boost Converter in Continuous Conduction Mode (CCM).................. 17 2.2.2.2 Synchronous Boost Converter in Synchronous Conduction Mode (SCM)................ 18 2.2.2.3 Synchronous Boost Converter in Triangular Current Mode (TCM).......................... 18 2.3 Active Clamp – Switch TCM DC – DC Converter. .............................................................. 19 2.3.1 Active Clamp – Switch TCM Buck Converter. ................................................................. 19 2.3.2 Active Clamp – Switch TCM Boost Converter. ................................................................ 21 ACTIVE - CLAMP TRIANGULAR CURRENT MODE H - BRIDGE CONVERTER ................................................................................................................................ 23 3.1 The Circuit Topology............................................................................................................... 23 3.1.1 Topology introduction........................................................................................................ 23 3.1.2 Topology operation modes................................................................................................. 23 3.2 Circuit Operating Principles. .................................................................................................. 24 3.2.1 Buck Mode Operating Principles. ...................................................................................... 24 3.2.2 Boost Mode Operating Principles. ..................................................................................... 31 3.2.3 The Operating Principles During Transition Between Buck and Boost Mode. ................. 36 3.3 Advantages and Challenges of the H-bridge Topology with CL-TCM............................... 37 3.3.1 Advantages. ........................................................................................................................ 37 3.3.2 Drawbacks and Challenges. ............................................................................................... 37vi DESIGN AND IMPLEMENT THE ACTIVE - CLAMP TRIANGULAR CURRENT MODE H – BRIDGE CONVERTER ........................................................................ 39 4.1 Circuit Design Procedures....................................................................................................... 39 4.1.1 Specifications. .................................................................................................................... 39 4.1.2 Proposed design flow. ........................................................................................................ 39 4.1.3 Briefed designing process. ................................................................................................. 42 4.1.3.1 GaN devices for the power stage................................................................................ 42 4.1.3.2 Inductance calculation and power inductor choosing. ............................................... 43 4.1.3.3 The duty parameters based on theoretical equations.................................................. 44 a) Buck mode...................................................................................................................... 44 b) Boost mode..................................................................................................................... 46 4.2 Control System Design............................................................................................................. 47 4.2.1 Power stage and control stage interface. ............................................................................ 47 4.2.2 Filter and sensing circuits................................................................................................... 48 4.2.2.1 Input and output voltage filter.................................................................................... 48 4.2.2.2 Input and output current sensing circuit..................................................................... 49 4.2.3 Control Method in Buck Mode Operation. ........................................................................ 50 4.2.4 Control Method in Boost Mode Operation. ....................................................................... 53 EXPERIMENTAL SETUPS AND RESULTS .................................................. 55 5.1 Experimental Setups. ............................................................................................................... 55vii 5.2 Experimental Results. .............................................................................................................. 57 SUMMARY AND FUTURE WORK ................................................................. 64 6.1 Summary ................................................................................................................................... 64 6.2 Future work .............................................................................................................................. 64 BIBLIOGRAPHY ............................................................................................................................ 66

    [1] Miftakhutdinov, R. 2009. Improving system efficiency with a new intermediate-bus architecture.
    In Texas Instruments Inc. Seminar (Vol. 2).
    [2] Haug, Bruce. 2018. 72 V Hybrid DC-to-DC Converter Reduces Intermediate Bus Converter Size
    by up to 50%.
    [3] Salato, M. 2011, October. Datacenter power architecture: IBA versus FPA. In 2011 IEEE 33rd
    International Telecommunications Energy Conference (INTELEC). IEEE. pp. 1-4.
    [4] Li, S. 2020, February. Intermediate Bus Converters for High Efficiency Power Conversion: A
    Review. In 2020 IEEE Texas Power and Energy Conference (TPEC). IEEE. pp. 1-6.
    [5] Curatolo, Tom. 2011. Select The Optimal Intermediate Bus Converter. JUN 23.
    [6] Miftakhutdinov, R, Sheng, L, Liang, J, Wiggenhorn, J, and Huang, H. 2008, February. Advanced
    control circuit for intermediate bus converter. In 2008 Twenty-Third Annual IEEE Applied Power
    Electronics Conference and Exposition. IEEE. pp. 1515-1521.
    [7] Barry, M. 2004, February. Design issues in regulated and unregulated intermediate bus converters.
    In Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004.APEC'04.
    IEEE. Vol. 3, pp. 1389-1394.
    [8] Miftakhutdinov. 2008, September. Power distribution architecture for tele-and data
    communication system based on new generation intermediate bus converter. In INTELEC 2008-
    2008 IEEE 30th International Telecommunications Energy Conference. IEEE. pp.1-8.
    [9] Xu, J, J Yang, G Xu, T Jiang, M Su, and M Zheng. 2019. PWM modulation and control strategy
    for LLC-DCX converter to achieve bidirectional power flow in facing with resonant parameters
    variation. IEEE Access 7. 54693-54704.
    [10] Yu, Oscar Nando. 2018. Improvements of Synchronous Rectification. Blacksburg, Virginia,
    September 10.67
    [11] Tan, D. F. D. 2014. A review of immediate bus architecture: A system perspective. IEEE Journal
    of Emerging and Selected Topics in Power Electronics, 2(3). IEEE. 363-373.
    [12] Lim, S, J Ranson, D M Otten, D Perreault, and D J Perreault. 2014. Two-stage power conversion
    architecture suitable for wide range input voltage. IEEE Transactions on Power Electronics,30(2).
    805-816.
    [13] Lee, Jun-Young, Y. S Jeong, H. J Chae, K. M Yoo, J. J Chang, and J. H Chang. 2013. "Lee, JunYoung, et al. Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio
    LLC resonant converter. U.S. Patent No. 8,467,199. Washington, DC: U.S. Patent and Trademark
    Office.
    [14] Buccella,C, C Cecati, and H Latafat. 2012. Digital control of power converters—A survey. IEEE
    Transactions on Industrial Informatics, 8(3). 437-447.
    [15] Yeh, C S, X Zhao, and J S Lai. 2017, October. An investigation on zero-voltage-switching
    condition in synchronous-conduction-mode buck converter. In 2017 IEEE Energy Conversion
    Congress and Exposition (ECCE). IEEE. 1728-1732.
    [16] Liu, D, Y Wang, Z Chen, and B Li. 2018, December. A buck converter with cost-effective GaN/Si
    hybrid switches and CRM operation for high-efficiency and high-power-density applications. In
    2018 IEEE 4th Southern Power Electronics Conference (SPEC). IEEE. 1-6.
    [17] Lai, J S, B York, A Koran, Y Cho, B Whitaaker, and H Miwa. 2010, June. High-efficiency design
    of multiphase synchronous mode soft-switching converter for wide input and load range. In The
    2010 International Power Electronics Conference-ECCE ASIA. IEEE. 1849-1855.
    [18] Rodriguez, A, A Vazquez, M R Rogina, and F Briz. 2017. Synchronous boost converter with
    high efficiency at light load using QSW-ZVS and SiC MOSFETs. IEEE Transactions on Industrial
    Electronics,65(1). 386-393.
    [19] Wang, B, Y Yuan, Y Zhou, and X Sun. 2016, May. Buck/boost bidirectional converter TCM
    control without zero-crossing detection. In 2016 IEEE 8th International Power Electronics and
    Motion Control Conference (IPEMC-ECCE Asia). IEEE. 3073-307.68
    [20] Yeh, C S, X Zhao, M C Chen, and J S Lai. 2019, March. Dual-loop control for synchronousconduction-mode tapped-inductor buck converter. In 2019 IEEE Applied Power Electronics
    Conference and Exposition (APEC). IEEE. 2344-2348.
    [21] Knecht, O, D Bortis, and J W Kolar. 2016, September. Comparative evaluation of a Triangular
    Current Mode (TCM) and Clamp-Switch TCM DC-DC boost converter. In 2016 IEEE Energy
    Conversion Congress and Exposition (ECCE). IEEE. 1-8.
    [22] Knecht, O, D Bortis, and J W Kolar. 2017. ZVS modulation scheme for reduced complexity
    clamp-switch TCM dc–dc boost converter. IEEE Transactions on Power Electronics, 33(5). 4204-
    4214.

    QR CODE