簡易檢索 / 詳目顯示

研究生: 楊瑞錶
Jui-piao Tang
論文名稱: 太陽能照明調光控制系統之研究
Study of Solar-powered Lighting Systems with Dimming Control
指導教授: 蕭弘清
Horng-ching Hsiao
口試委員: 吳英秦
Yin-chin Wu
陳建富
Jiann-fuh Chen
梁從主
Tsorng-juu Liang
葉勝年
Sheng-nian Yeh
張宏展
Hong-chan Chang
王文智
Wen-jieh Wang
吳瑞南
Ruay-nan Wu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 130
中文關鍵詞: 最大功率追蹤零電壓切換式直流轉換器區段調光曲線照明管理系統冷陰極螢光燈壓電型諧振式變流器衝擊模式
外文關鍵詞: Maximum power point tracking (MPPT), zero-voltage-switching (ZVS) DC/DC converter, time-zoned dimming curve, lighting management system, cold cathode fluorescent lamp (CCFL), piezoelectric resonant-type inverter, burst mode.
相關次數: 點閱:449下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文太陽能照明系統的研究,以探討照明系統的電能管理為核心,系統以高壓鈉燈及冷陰極螢光燈作為照明負載,分別就照明管理系統的設計及應用、點燈電路的設計、分離型線路的配置、系統整合及冷陰極螢光燈點燈電路之控制積體電路的設計進行探討。
    太陽能照明系統的電能管理分為發電系統及照明系統兩部分。在發電系統部分,採用最大功率追蹤控制技術,並搭配零電壓切換式直流轉換器作為充電電路,以提升發電及充電的效率。在照明系統部分,本文根據人類夜間的作息習慣,提出夜間區段調光曲線,作為照明管理系統設計的準則。為了使蓄電池的能量在夜間有效地運用,系統可依季節的不同,設定夜間點燈的時間長度,並藉由偵測蓄電池電壓的大小,判斷蓄電池的儲存容量,作為照明負載選擇夜間區段調光曲線的依據,以達到夜間持續照明及調光節能之目的。
    高壓鈉燈點燈電路的設計,採用推挽式串聯諧振並聯負載電子安定器,直接將蓄電池升壓後點燈。高壓鈉燈的調光則藉由改變變流器的輸入電壓。冷陰極螢光燈點燈電路的設計,由壓電型諧振式變流器直接將蓄電池升壓後點燈,並採用脈衝模式作為調光的方法,而點燈電路的參數設計則採用傳輸參數的模型與虛功率補償的方法。冷陰極螢光燈點燈電路之控制積體電路設計有升壓式穩壓器與變流器兩種控制迴路,控制迴路設計有穩壓、柔性啟動、數位調光、頻率微調及燈管異常偵測等功能。
    由實驗及模擬結果顯示,高壓鈉燈由100 W變化到27 W時,燈管電流峰值因數均低於1.4;冷陰極螢光燈由4 W變化到2.3 W,效率維持90 % 以上。本文所設計的太陽能照明管理系統,能達到持續照明、節能、低燈管電流峰值因數的要求,符合綠色照明之實用潮流。


    In developing the proposed solar-powered lighting system using high-pressure sodium lamps and cold-cathode fluorescent lamps (CCFLs) as the load, we first focus on an electric energy management aimed at energy conservation and then separately design the lamp-ignition circuit, the separate-type circuit layout, the CCFL lamp-ignition control integrated circuit and, finally, integrate them together.
    The electric energy management comprises an electricity generation system and a lighting system. In the electricity generation system, we adopt the maximum-power point tracking (MPPT) control technique and match it with a zero-voltage switching DC-DC converter served as a charging circuit to increase the efficiencies in wattage generation and charging. In the lighting system, we propose, according to ordinary evening activity habits, a night-time time-zone-wise light-adjustment curve as the guideline for the design of our lighting management system. To enable the efficient usage of the batteries’ energy capacity, the proposed system may set, according to the season difference, the night-time lighting time length and, according to the measured charging voltage magnitude of battery, determine the storage capacity of the batteries to offer a criterion for selecting a suitable night-time time-zone-wise light-adjustment curve for the lighting loads to reach the goals of energy conservation and continuous lighting during the night-time.
    A push-pull type series-connected resonant circuit is connected in parallel with electronic ballast as the load to directly raise the battery voltage to ignite the high-pressure sodium lamp. The high-pressure sodium lamp is dimmed by varying the input voltage of the inverter. A piezoelectric resonant-type inverter is used to raise the battery voltage to ignite the CCFL; the burst mode is adopted as the dimming method for the CCFL. A transmission-parameter model and a reactive power compensation method are employed to determine the parameters of the lamp-ignition circuit. An integrated circuit for controlling the ignition of the CCFL, which includes two control loops for a boost regulator and an inverter, is developed in this study; the control loops offer a few functions such as voltage stabilization, soft start, digital dimming, frequency fine tuning, lamp abnormality detection, and so forth.
    The experimental and simulation results indicate that the crest factor of the lamp current is all below 1.4 when the output power of the high-pressure sodium lamp varies from 100 W to 27 W. The efficiency of the CCFL remains above 90% when it is dimmed from 4 W to 2.3 W. The solar-powered system developed in this study possesses a few advantages, including continuous lighting ability, energy conservation and a low lamp-current crest factor, which all conform to the general intention of green lighting.

    中文摘要 i 英文摘要 ii 誌謝 iv 目錄 v 圖表索引 ix 第一章 緒論 1 1.1 研究背景與目的 1 1.2 太陽能照明系統之架構 6 1.3 論文架構 11 第二章 太陽能高壓鈉燈照明系統的設計與研製 13 2.1 前言 13 2.2 系統電路架構 13 2.3 最大功率追蹤器 15 2.3.1 擾動與觀察法 15 2.3.2 零電壓切換式升壓型直流轉換器 16 2.4 推挽式電子安定器的電路分析 20 2.4.1 推挽式電子安定器的等效電路 20 2.4.2 安定器啟動模式分析 21 2.4.3 安定器穩態模式分析 23 2.5 推挽式電子安定器參數的設計與選定 29 2.5.1 高壓點火電路的設計 29 2.5.2 諧振電路參數的選定 30 2.6 結語 31 第三章 太陽能高壓鈉燈照明管理系統的規劃與設計 32 3.1 前言 32 3.2 系統電路架構 32 3.3 蓄電池特性分析 34 3.4 系統電壓轉移方程式 37 3.5 夜間區段調光的規劃與設計 38 3.5.1 蓄電池容量100 %時的調光規劃 39 3.5.2 太陽能板與蓄電池容量的決定 41 3.6 以區段功率固定法設計調光曲線 43 3.7以區段功率比例推移法設計調光曲線 45 3.8功率固定法及功率比例推移法之節能效益分析 48 3.9 結語 49 第四章 太陽能冷陰極螢光燈分離型照明管理系統的設計與應用 51 4.1 前言 51 4.2 太陽能分離型照明系統之線路配置 51 4.3 分離型照明調光系統之電路架構 52 4.4 壓電型諧振式變流器的等效電路 53 4.5 壓電型諧振式變流器電路分析 55 4.5.1 傳輸參數模型的分析 55 4.5.2 虛功率補償法的分析 57 4.6 壓電型諧振式變流器電力電路的參數設計 59 4.6.1 傳輸參數模型 59 4.6.2 虛功率補償法 61 4.7 脈衝模式調光方法的分析與設計 63 4.7.1 調光方法的分析 63 4.7.2 調光設計 64 4.8 以區段調光責任週期固定法設計區段調光曲線 65 4.9 太陽能板與蓄電池容量的選定 67 4.10 區段調光的節能效益與區段調光的應用 68 4.10.1 節能效益 68 4.10.2 分離型照明系統區段調光的應用 69 4.11 結語 70 第五章 冷陰極螢光燈點燈電路控制積體電路的設計研究 …………...71 5.1 前言 71 5.2 系統電路架構與控制積體電路的功能設計………………...71 5.3 數位邏輯控制單元 73 5.4 升壓式穩壓器控制迴路 75 5.4.1 電力電路的分析與參數設計 75 5.4.2 控制迴路的設計 77 5.5 變流器控制迴路 79 5.5.1 柔性啟動控制 79 5.5.2 調光控制 80 5.5.3 燈管異常偵測迴路 82 5.5.4 點燈頻率的微調設定 84 5.6 結語 84 第六章 模擬與實驗結果 86 6.1 前言 86 6.2 最大功率追蹤器 86 6.3 推挽式電子安定器 90 6.3.1 高壓點火電路 90 6.3.2推挽式電子安定器 91 6.4 推挽式直流轉換器 95 6.5 類串並聯諧振式電子安定器 97 6.6 高壓鈉燈之夜間區段調光 100 6.6.1 區段功率固定法 100 6.6.2 區段功率比例推移法 104 6.7 冷陰極螢光燈之夜間區段調光 105 6.8 冷陰極燈管點燈電路控制積體電路的設計………………...111 6.8.1 穩壓器輸入電壓Vin為7.5 V 111 6.8.2 穩壓器輸入電壓Vin為20 V 113 6.9 結語 115 第七章 結論與與未來研究方向 116 7.1 結論 116 7.2 研究成果與貢獻 118 7.3 建議與未來研究方向 119 參考文獻 122 作者簡介 129

    [1]Hussein, K. H., I. Muta, T. Hoshino and M. Osakada, “Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmosphereeic Conditions,” IEE Proceedings-Generation Transmission and Distribution, Vol. 142, No. 1, pp. 59-64(1995).
    [2]Duarte, J. L., J. A. A. Wijntjens and J. Rozenboom, “Designing Light Sources for Solar-Powered Systems,” Proceedings of The 5th European Power Electoronics Conference and Application, Vol. 8, pp. 78-82(1993).
    [3]Hermann, U. and H. G. Langer, “Low Cost DC to AC Converter for Photovoltaic Power Conversion in Residential Applications,” IEEE Proceedings of The Power Electronics Specialists Conference, pp. 588-594 (1993).
    [4]Snyman, D. B. and J. H. R. Enslin, “Combined Low-Cost, High-Efficient Inverter, Peak Power Tracker and Regulator for PV Application,” IEEE Proceedings of The Power Electronics Specialists Conference, pp. 67-74 (1989).
    [5]楊健忠、楊瑞錶、蕭弘清,「太陽能高壓鈉燈照明系統之設計與研製」,技術學刊,第十九卷,第四期,第337頁∼第348頁,民國九十三年。
    [6]黃耀德、楊瑞錶、蕭弘清,「太陽能照明系統之調光控制技術研究」,台灣電力電子研討會論文集,第317頁∼第323頁,民國九十二年。
    [7]肖輝乾、張紹綱、孫延年等編譯,「照明手冊」,第167頁∼第171頁,中國建築工業出版社。
    [8]Beukes, H. J. and J. H. R. Enslin, “Analysis of A New Compound Converter as MPPT, Battery Regulator and Bus Regulator for Satellite Power Systems,” IEEE Proceedings of The Power Electronics Specialists Conference, pp. 846-852(1993).
    [9]Hua, C. C., J. R. Lin and C. M. Shen, “Design and Implementation of Photovoltaic Power Storage System with Digital Signal Processor,” Journal of The Chinese Institute of Electrical Engineering, Vol. 5, No. 1, pp. 278-282(1998).
    [10]Wu, T. F., C. H. Chang and Y. K. Chen, “A Fuzzy-Logic-Controlled Single-Stage Converters for PV-Powered Lighting System Applications,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 287-296 (2000).
    [11]Wu, T. F., C. H. Chang, Z. R. Liu and Y. J. Wu, “Single-Stage Converters for PV Lighting Systems with MPPT and Energy Backup,” IEEE Transactions on Aerospace and Electronics Systems, Vol. 35, No. 4, pp. 1306-1317(1999).
    [12]Won, C. Y., D. H. Kim, S. C. Kim, W. S. Kim and H. S. Kim, “A New Maximum Power Point Tracker of Photovoltaic Arrays Using Fuzzy Controller,” IEEE Proceedings of The 25-th Annual Power Electronics Specialists Conference, Vol. 1, pp. 396-403(1994).
    [13]吳財福、張健軒、陳裕愷,「太陽能供電與照明系統綜論」,第2-1頁∼第2-24頁,台北,全華科技圖書股份有限公司,民國八十九年。
    [14]Koutroulis, E., K. Kalaitzakis and N. C. Voulgaris, “Development of a Micro-Controller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Vol. 16, No. 1, pp. 46-54(2001).
    [15]Salameh, Z. and D. Taylor, “Step-up Maximum Power Point Tracker for Photovoltaic Arrays,” Journal of Solar Energy, Vol. 44, No. 1, pp. 57-61 (1990).
    [16]陳守誠,「太陽能與風力發電複合系統之研製」,國立台灣科技大學電機工程系碩士論文,民國九十一年。
    [17]蔡宗志,「以數位信號處理器為基礎之太陽能與風力複合發電系統之研製」,國立台灣科技大學電機工程系碩士論文,民國九十三年。
    [18]Wu, L. B., Z. M. Zhao, J. Z. Liu and J. Wang, “Implementation of a Stand-alone Photovoltaic Lighting System with Maximum Power Point Tracking and High Pressure Sodium Lamp,” IEEE Proceedings of The 5-th International Conference on Power Electronics and Drive Systems, Vol. 2, pp. 1570-1573(2003).
    [19]Arulselvi S., C. Subashini and G. Uma, “A New Push-Pull Zero Voltage Switching Quasi-Resonant Converter: Topology, Analysis and Experimentation,” IEEE Indicon Conference, pp. 482-486(2005).
    [20]Xi. Y., P. K. Jain and G. Joos, “A Zero Voltage Switching Flyback Converter Topology,” IEEE Proceedings of The 28-th Annual Power Electronics Specialists Conference, Vol. 2, pp. 951-957(1997).
    [21]Kazimierczuk M. K. and D. Czarkowski, “Resonant Power Converters,” John Wiley and Sons, New York, pp. 241-263(1995).
    [22]Lee, F. C., “High-Frequency Quasi-Resonant Converter Technologies,” IEEE Transactions on Power Electronics, Vol. 76, No. 4, pp. 377-390 (1988).
    [23]Youn, Y. S. and G. H. Cho, “Regenerative Signal Amplifying Gate Driver of Self-Excited Electronic Ballast for High Pressure Sodium Lamps,” IEEE Proceedings of The Power Electronics Specialists Conference, pp. 993-998(1996).
    [24]Yaakov, S. B. and M. Gulko, “Design and Performance of an Electronic Ballast for High Pressure Sodium Lamps,” IEEE Proceedings of The 18-th Conventions Conference on Electrical and Electronics Engineers, Vol. 2, pp. 665-669(1995).
    [25]Christian, B., J. F. Azcondo and S. Bracho, “Electronic Ballast for HPS Lamps with Dimming Control by Variation of the Switching Frequency. Soft Start-up Method for HPS and Fluorescent Lamps,” IEEE Proceedings of The 24-th Annual Conference on Industrial Electronics Society, Vol. 2, pp. 953-958(1998).
    [26]Jeong, I. W., G. H. Rim, H. J. Lee, J. S. Kim and H. S. Lee, “Development of an Electronic Ballast for 250W HPS Lamps,” IEEE Proceedings of The International Symposium on Industrial Electronics, Vol. 1, pp. 42-45 (2001).
    [27]Xu, D. G., W. Q. Zhang, Z. Y. Bao and G. Liu, “Novel Control Strategies for HPS Lamps Driven by Electronic Ballast,” IEEE Proceedings of The 37-th Industry Applications Conference, Vol. 3, pp. 1852-1854(2002).
    [28]Zhang, W. Q., D. G. Xu and C. H. Lee, “Design and Performance of Digital Ballast for HPS Lamps,” IEEE Proceedings of The 18-th Annual Applied Power Electronics Conference, Vol. 2, pp. 1205-1208(2003).
    [29]Wang, W., W. Q. Zhang, G. A. Gao and D. G. Xu, “A Study of an Electronic Ballast for High Pressure Sodium Lamp,” IEEE Proceedings of The 3rd International Conference on Power Electronics and Motion Control, Vol. 3, pp. 1056-1060(2000).
    [30]Dos Reis, F. S., J. C. Lima, R. Jr. Tonkoski, V. M. Canalli and F. M. Ramos, “Single Stage Ballast for High Pressure Sodium Lamps,” IEEE Proceedings of The 30-th Annual Conference on Industrial Electronics Society, Vol. 3, pp. 2888-2993(2004).
    [31]Edilson Mineiro, S. Jr., D. Sergio, L. M. Fernando and M. T. Cicero, “Photovoltaic System for Supply Public Illumination In Electrical Energy Demand Peak,” IEEE Proceedings of The 19-th Conference on Applied Power Electronics, Vol. 3, pp. 1501-1506(2004).
    [32]梁從主、莊家銘、鄭竣安、陳建富,「高頻汽車用氙燈電子式安定器之研製」,台灣電力電子研討會論文集,第372頁∼第377頁,民國九十一年。
    [33]Fukunaga, H., H. Kakehashi, H. Ogasawara and Y. Ohta, “Effect of a Dimension on Characteristics of Rosen-Type Piezoelectric Transformer,” IEEE Proceedings of The 29-th Annual Power Electronics Specialists Conference, pp. 1504-1510(1998).
    [34]Chen, C. C., Y. T. Chung, Y. M. Chen and T. F. Wu, “Multi-Phase Multi-Lamp Driving System for LCD Back Light,” IEEE Proceedings of the 35-th Annual Power Electronics Specialists Conference, pp. 1823-1827(2004).
    [35]Moo, C. S., W. M. Chen and H. K. Hsieh, “Electronic Ballast with Piezoelectric Transformer for Cold Cathode Fluorescent Lamps,” IEE Proceedings-Electric Power Applications, Vol. 150, No. 3, pp. 278-282 (2003).
    [36]Lin, Y. L. and A. F. Witulski, “Analysis and Design of Current-Fed Push-Pull Resonant Inverters---Cold Cathode Fluorescent Lamp Drivers,” IEEE Proceedings of The 35-th Annual Conference on Industy Applications, Vol. 4, pp. 2149-2152(1996).
    [37]Kouno, M., S. Yamaguchi and Y. Shimada, “Inverter and Method for Driving a Plurality of Cold Cathode Tubes in Parallel,” US Patent, 6075325(2000).
    [38]Lin, M. S., W. J. Ho, F. T. Shih, D. Y. Chen and Y. P. Wu, “A Cold-Cathode Fluorescent Lamp Driver Circuit with Synchronous Primary-Side Dimming Control,” IEEE Transactions on Industrial Electronics, Vol. 45, pp. 249-255(1998).
    [39]Lin, M. S., M.C. Lee, D. Y. Chen and W. S. Feng, “Synchronous Dimming Control for a Cold-Cathode Fluorescent Lamp Driver,” IEEE Electronics Letters, Vol. 32, pp. 1151-1153(1996).
    [40]Smidt, P. J. M. and J. L. Durate, “Powering Neon Lamps Through Piezoelectric Transformers,” IEEE Proceedings of The Power Electronics Specialists Conference, pp. 310-315(1996).
    [41]Jong, T. L., C. D. Wey and C. T. Pan, “A PT-Based Bi-Frequency Phase-Shift Driver for CCFL,” Journal of the Chinese Institute of Electrical Engineering, Vol. 11, pp. 153-160(2004).
    [42]Wey, C. D., T. L. Jong and C. T. Pan, “Design and Analysis of an SLPT-Based CCFL Driver,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 1, pp. 208-217(2003).
    [43]Spiazzi, G., S. Buso and P. Tomasin, “Cold Cathode Fluorescent Lamp Power Supply Based on Piezoelectric Transformers,” IEEE Proceedings of The 35-th Annual Power Electronics Specialists Conference, Vol. 1, pp. 406-412(2004).
    [44]Ishizuka Y., K. W. Lee, T. Oyama and H. Matsuo, “Consideration of A Single-Switch Inverter for Piezo-Electric Transformer with A New Control Method,” IEEE Proceedings of The 34-th Power Electronics Specialists Conference, Vol. 4, pp. 1621-1626(2003).
    [45]AP2001 CCFL Inverter Application Note, Anachip Corp., (2002).
    [46]AAT1341 2-Channle Switching Regulator Application Note, Advanced Analog Technology Inc., (2002).
    [47]Marchesan, T. B., G. W. Denardin, R. P. Silveira, A. Campos and R. D. Prado, “Development of a Control Fieldbus for HPS Electronic Ballasts Using Power Lines,” IEEE Proceedings of The 35-th Annual Power Electronics Specialists Conference, Vol. 5, pp. 3593-3596(2004).
    [48]陳財榮、陳建治、陳德超、林建文、陳嘉斌,「高壓鈉燈可調光電子式安定器之研製」,中華民國第十九屆電力研討會論文集,第1068頁∼第1072頁,民國八十七年。
    [49]Wang, M. J. and D. G. Xu, “Micro Controller-Based Electronic Ballast for Multiple HPS Lamps,” IEEE Proceedings of The International Conference on Power Electronics and Drives Systems, Vol. 2, pp. 844-847(2005).
    [50]Cavalcante, F. S. and I. Barbi, “A New Dimmable 70W Electronic Ballast for High Pressure Sodium Lamps,” IEEE Proceedings of The 37-th Conference on Industry Applications, Vol. 3, pp. 1856-1861(2002).
    [51]Ho, Y. K., T. S. Lee, S. H. Chung and S. Y. Ron Hui, “A Comparative Study on Dimming Control Methods for Electronic Ballasts,” IEEE Transactions on Power Electronics, Vol. 16, pp. 828-836(2001).
    [52]Ron Hui, S. Y., L. M. Lee, H. S. H. Chung and Y. K. Ho, “An Electronic Ballast with Wide Dimming Range, High PF, and Low EMI,” IEEE Transactions on Power Electronics, Vol. 16, pp. 465-472(2001).
    [53]楊瑞錶、張錫臣,「數位式相位移擬似諧振電路零電流控制迴路裝置」,中華民國發明專利字號第159171號,民國九十一年.
    [54]張耀暉,「太陽光電能驅動照明系統之充放電器分析與設計」,國立中正大學電機研究所碩士論文,民國九十年。
    [55]楊瑞錶,「高效率高功因可調光型電子安定器之設計與研製」,中華學報,第三十三卷,第一期,第87頁∼第100頁,民國九十四年。
    [56]Moo, C. S., H. L. Cheng and Y. N. Chang, “Single-Stage High-Power-Factor Dimmable Electronic Ballast with Asymmetrical Pulse-Width-Modulation for Fluorescent Lamp,” IEE Proceedings- Electric Power Applications, Vol. 148, pp. 125-132(2001).
    [57]Kim, C. J., J. G. Ji and S. Y. Yoon, “A Study on the Design and Performance of Electronic Ballast for CCFL Dimming Control with Frequency Modulation,” IEEE Proceedings of The 6-th International Conference on Electrical Machines and Systems, Vol. 1, pp. 453-456 (2003).
    [58]蕭弘清,張宏展,郭政謙,顏榮良,韓明紘,張洋三,黃耀德,林群翔,王凱民,「便利商店照明及電熱設備合理用電模式之研究」,台電工程月刊,第673期,第41頁∼第55頁,民國九十三年。
    [59]李麗玲,李清然,林士凱,「照明節約能源概論」,台電工程月刊,第687期,第91頁∼第104頁,民國九十四年。
    [60]黃素琴,方世雄,鍾國光,「小型超商耗能設備調查分析與節能監控策略研究」,台電工程月刊,第687期,第122頁∼第131頁,民國九十四年。
    [61]林偉德,「整體照明節能措施:照明管理系統」,電力電子技術期刊,第50期,4月號,第26頁∼第37頁,民國八十三年。
    [62]Xu, D. G., Y. F. Mou, X. S. Liu and W. Q. Zhang, “Reliable Distributed Power Line Communication for New Public Lighting Management System,” IEEE Proceedings of The International Conference on Industrial Informatics, pp. 73-78(2003).
    [63]Casa, G. and F. Veroni, “A New Way to Manage Public Lighting,” IEEE Proceedings of The 9-th International Conference on Metering and Tariffs for Energy Supply, pp. 91-95(1999).
    [64]TMS320LF/LC240XA DSP Controllers Reference Guide System and Peripherals, Texas Instruments, (2001).
    [65]Yang J. P. and H. C. Chang, “Cool Cathode Tube Control Circuit,” US Patent, 6611113 B2(2003).
    [66]Tsorng, J. L., C. A. Cheng and C. M. Chuang, “Shortening Warm-up Time with Variable Frequency Control for Projector Lamp Ballast,” IEEE Proceedings of The Power Conversion Conference, Vol. 1, pp. 90-94 (2002).
    [67]Taiwan Kobe Battery CO., LTD., “Sealed Lead-Acid Batteries Technical Manual”.

    無法下載圖示 全文公開日期 2010/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE