簡易檢索 / 詳目顯示

研究生: 張哲嘉
CHE-CHIA CHANG
論文名稱: 研究氮化鎵垂直共振腔面射型雷射之共振腔的端面處理
Investigation on the surface treatment of the end facets of GaN-based vertical-cavity surface-emitting lasers
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
陳鴻興
Hung-Shing Chen
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 139
中文關鍵詞: 氮化鎵垂直共振腔面射型雷射端面處理矽擴散
外文關鍵詞: GaN, VCSEL, Surface treatment, Si-diffusion
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討乾式以及濕式蝕刻對於VCSEL共振腔端面的影響。透過兩種商用矽基板磊晶生長的氮化鎵LED晶圓,我們成功研製出了改善共振腔端面粗糙度的方法,使用KOH和UVO製程,成功將共振腔端面的表面顆粒尺寸從8.25×10 μm改善至0.33×0.33 μm。
    這種端面處理的製程方式不僅適用於GaN-on-Si晶圓,還可應用於其他基板的氮化鎵晶圓,例如藍寶石、氮化鎵和碳化矽,只要能去除基板,就可以使用這種方法改善端面平坦度,並控制VCSEL共振腔長度。
    此外,針對材料不同極化方向導致無法使用KOH蝕刻的晶圓,我們研究了ICP-RIE蝕刻和UVO方式,以改善表面平坦度並控制共振腔長度。結果顯示,通過這些製程方法,我們成功將表面顆粒尺寸從3.96×2.94 μm改善至0.56×0.61 μm。
    綜上所述,本研究展示了改善VCSEL共振腔端面平坦度的製程方法。這項研究有助於提高VCSEL的性能和可靠性,並在光通訊和光學應用等領域具有重要的應用潛力。


    The aim of this study was to investigate the impact of dry and wet etching on the resonator facets of VCSELs. Using two commercially available GaN-on-Si LED wafers, we successfully developed methods to improve the roughness of the resonator facet by employing KOH and UVO processes, which reduced the surface particle size from 8.25×10 μm to 0.33×0.33 μm. It is worth noting that this facet improvement process is not limited to GaN-on-Si wafers but can also be applied to other GaN wafers grown on different substrates such as sapphire, GaN, and SiC, as long as the substrate can be removed. This method allows for improved facet flatness and control of the VCSEL resonator length.
    Furthermore, for wafers where the use of KOH etching was not feasible due to material polarization, we investigated ICP-RIE etching and UVO processes to improve surface flatness and control the resonator length. The results showed that these processing methods successfully reduced the surface particle size from 3.96×2.94 μm to 0.56×0.61 μm.
    In summary, this study demonstrated process methods for improving the flatness of VCSEL resonator facets. This research contributes to enhancing the performance and reliability of VCSELs and holds significant potential for applications in optical communications and optical systems.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 氮化鎵材料概述 3 1.3 文獻回顧 8 1.4 研究動機 18 第二章 垂直共振腔面射型雷射介紹 19 2.1 半導體雷射基礎知識 19 2.2 垂直共振腔面射型雷射原理架構 21 2.3 銀鏡 23 2.4 分散式布拉格反射鏡 24 2.5 電流與光學侷限結構 28 2.5.1 矽擴散電流侷限結構 32 第三章 元件設計與共振腔端面平坦度的研究 35 3.1 垂直共振腔面射型雷射元件設計 35 3.2 共振腔均勻度對雷射特性的影響 38 3.3 端面處理實驗:乾式蝕刻 40 3.4 端面處理實驗:濕式蝕刻 45 第四章 元件製程與儀器介紹 50 4.1 元件製程 50 4.1.1 活化製程 50 4.1.2 高台圖形製程 51 4.1.3 電流阻擋層製程 52 4.1.4 二氧化矽絕緣層沉積 53 4.1.5 透明導電層沉積 54 4.1.6 電極沉積(P-Pad) 55 4.1.7 電極沉積(N-Pad) 56 4.1.8 晶片基板研磨 57 4.1.9 離子深蝕刻製程 58 4.1.10 濕式蝕刻製程 59 4.1.11 紫外光臭氧清潔製程 60 4.1.12 銀鏡沉積 61 4.1.13 介電質DBR鍍製 62 4.2 製程儀器 63 4.2.1 旋轉塗佈機 63 4.2.2 光罩對準機 64 4.2.3 感應耦合電漿式離子蝕刻機 65 4.2.4 電漿增強式化學氣相沉積 66 4.2.5 電子束蒸鍍機 67 4.2.6 快速升溫退火爐 68 4.2.7 晶片研磨機 69 4.2.8 離子深蝕刻機 70 4.2.9 紫外光臭氧清潔機 71 4.3 量測儀器介紹 72 4.3.1 基本電性量測系統 72 4.3.2 表面輪廓儀 73 第五章 實驗結果與討論 74 5.1 乾式蝕刻處理端面的實驗結果 74 5.2 濕式蝕刻處理端面的實驗結果 81 5.3 乾式與濕式蝕刻之結果比較與討論 86 5.4 VCSEL元件在銀鏡鍍製前後之量測結果 89 5.5 VCSEL元件在介電質DBR鍍製前後之量測結果 103 第六章 結論與未來展望 111 6.1 結論 111 6.2 未來展望 113 參考文獻 114

    [1] Hamaguchi, T., M. Tanaka, and H. Nakajima, "A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation". Japanese Journal of Applied Physics, 2019. 58: p. 18.
    [2] Chang, T.-C., et al., "High-temperature operation of GaN-based vertical-cavity surface-emitting lasers". Applied Physics Express, 2017. 10(11).
    [3] Cosendey, G., et al., "Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate". Applied Physics Letters, 2012. 101(15).
    [4] Hamaguchi, T., et al., "Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth". physica status solidi (a), 2016. 213(5): p. 1170-1176.
    [5] Hashemi, E., et al., "Engineering the Lateral Optical Guiding in Gallium Nitride-Based Vertical-Cavity Surface-Emitting Laser Cavities to Reach the Lowest Threshold Gain". Japanese Journal of Applied Physics, 2013. 52(8S).
    [6] Ikeyama, K., et al., "Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors". Applied Physics Express, 2016. 9(10).
    [7] Kasahara, D., et al., "Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature". Applied Physics Express, 2011. 4(7).
    [8] Mei, Y., et al., "A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures". Semiconductor Science and Technology, 2018. 33(1).
    [9] Okur, S., et al., "GaN-Based Vertical Cavities with All Dielectric Reflectors by Epitaxial Lateral Overgrowth". Japanese Journal of Applied Physics, 2013. 52(8S).
    [10] Omae, K., et al., "Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate". Applied Physics Express, 2009. 2.
    [11] Higuchi, Y., et al., "Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection". Applied Physics Express, 2008. 1(12): p. 3.
    [12] Kuramoto, M., et al., "Watt-class blue vertical-cavity surface-emitting laser arrays". Applied Physics Express, 2019. 12(9): p. 4.
    [13] Kuramoto, M., et al., "High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser". Applied Physics Express, 2018. 11(11): p. 3.
    [14] Schubert, E.F., "Light-emitting diodes". 2006: Cambridge university press.
    [15] A Primer on GaN and 3 Reasons It Outperforms Other Semiconductors in RF Applications. Available from: https://www.qorvo.com/design-hub/blog/a-primer-on-gan-and-3-reasons-it-outperforms-other-semiconductors-in-rf-applications.
    [16] 杜佳豪, "氮極性獨立式氮化鎵基板磷酸蝕刻機制與形貌探討". 國立交通大學電子物理學系碩士論文.
    [17] Feng, M.X., et al., "Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si". Acs Photonics, 2018. 5(3): p. 699-704.
    [18] Hsu, L.H., et al., "Development of GaN HEMTs Fabricated on Silicon, Silicon-on-Insulator, and Engineered Substrates and the Heterogeneous Integration". Micromachines, 2021. 12(10): p. 32.
    [19] DASGUPTA, S., "Nanostructures and nanofeatures with Si(111) planes on Si(100) wafers for III-N epitaxy". 2006.
    [20] Schriever, C., et al., "Strained Silicon Photonics". Materials, 2012. 5(5): p. 889-908.
    [21] Nikishin, S.A., et al., "High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia". Applied Physics Letters, 1999. 75(14): p. 2073-2075.
    [22] Guha, S. and N.A. Bojarczuk, "GaN based light emitting diodes grown on Si(111) by molecular beam epitaxy". Electronics Letters, 1997. 33(23): p. 1986-1987.
    [23] Feng, M., et al., "III-nitride semiconductor lasers grown on Si". Progress in Quantum Electronics, 2021. 77.
    [24] Sun, Q., et al., "GaN-on-Si blue/white LEDs: epitaxy, chip, and package". Journal of Semiconductors, 2016. 37(4).
    [25] Yeh, P.S., et al., "GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer". IEEE Photonics Technology Letters, 2014. 26(24): p. 2488-2491.
    [26] 盧廷昌、王興宗, "半導體雷射技術". 2010: 五南圖書.
    [27] 盧廷昌、王興宗, "半導體雷射導論". 2008: 五南圖書.
    [28] 宋美佳, "高功率單模態面射型雷射技術之研究". 國立交通大學光電半導體與奈米科技產業研發碩士班碩士論文, 2008.
    [29] 周俊維, "以氮化鎵磊晶於矽基板晶圓製作的共振腔發光二極體". 國立台灣科技大學電子工程系碩士論文, 2022.
    [30] 交大盧廷昌老師 - 實驗室簡介. Available from: http://140.113.76.112/zh_tw/research/res/intro2_0.
    [31] Lu, T.C., et al., "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser". Applied Physics Letters, 2008. 92(14): p. 3.
    [32] Zhang, C., R. ElAfandy, and J. Han, "Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers". Applied Sciences, 2019. 9(8).
    [33] Hamaguchi, T., et al., "Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on {20-21} semi-polar GaN". Applied Physics Express, 2020. 13(4): p. 5.
    [34] 胡文貴, "垂直諧振腔面射型雷射的特性分析與量測". 國立臺北科技大學電機工程系碩士班碩士論文, 2007.
    [35] 謝永龍, "氮化鎵面射型發光元件的製造與光學特性". 國立交通大學光電工程研究所碩士論文, 2004.
    [36] Liu, Y.-Y., T.-C. Wu, and P.S. Yeh, "Etch-stop process for precisely controlling the vertical cavity length of GaN-based devices". Materials Science in Semiconductor Processing, 2020. 120.
    [37] Gacoin, M.T., "Plasma Nanotexturing of Silicon for Photovoltaic Applications : Tailoring Plasma-Surface Interactions for Improved Light Management". Universite Paris Saclay, 2018.
    [38] High etch rates, process flexibility and reduced ion bombardment. Available from: https://corial.plasmatherm.com/en/technologies/icp-rie-inductively-coupled-plasma-reactive-ion-etching.
    [39] Wu, W.I., et al., "Materials and methods for the microfabrication of microfluidic biomedical devices, in Microfluidic Devices for Biomedical Applications", X. Li and Y. Zhou, Editors, Woodhead Publ Ltd: Cambridge. p. 3-62. 2013
    [40] Guo, W., et al., "KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode". Applied Physics Letters, 2015. 106(8): p. 4.
    [41] Nakamura, S., et al., "THERMAL ANNEALING EFFECTS ON P-TYPE MG-DOPED GAN FILMS". Japanese Journal of Applied Physics Part 2-Letters, 1992. 31(2B): p. L139-L142.
    [42] 欣賢科技-旋轉塗佈技術簡介.
    [43] MA6 Standard Operating Procedure. Available from: https://www.seas.upenn.edu/~nanosop/MA6_SOP.htm.
    [44] Etching AlGaN alloys using ICP RIE.
    [45] What is Plasma Enhanced Chemical Vapor Deposition (PECVD)? ; Available from: https://www.semicore.com/news/118-what-is-plasma-enhanced-chemical-vapor-deposition-pecvd.
    [46] What is E-Beam Evaporation? ; Available from: https://www.semicore.com/news/89-what-is-e-beam-evaporation.
    [47] ULVAC SHOWCASE MILA-5000. Available from: https://showcase.ulvac.co.jp/cn/products/heat-treatment-and-thermal-properties/infrared-gold-image-furnace-rta/tabletop-lamp-heating/mila-5000series.html.
    [48] "Ensuring Certainty Struers Tegramin-20".
    [49] "What is the Bosch Process (Deep Reactive Ion Etching)?".
    [50] "UV Ozone Cleaner UV-1".
    [51] "Cope Electronics Chroma 58173-M".
    [52] BUKER-DektakXT. Available from: https://www.bruker.com/en/products-and-solutions/test-and-measurement/stylus-profilometers/dektakxt.html.
    [53] Refractive Index Database. Available from: https://refractiveindex.info/?shelf=main&book=GaN&page=Barker-o.

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE