簡易檢索 / 詳目顯示

研究生: 高煜翔
YU-HSIANG KAO
論文名稱: 綠光共振腔發光二極體製作於矽基板氮化鎵晶圓
Resonant-cavity green LEDs based on a GaN-on-Si wafer
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
蘇忠傑
Jung-Chieh Su
黃升龍
Sheng-Lung Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 共振腔發光二極體綠光矽基板氮化鎵晶圓
外文關鍵詞: Resonant-cavity green LEDs, RCLED, GaN-on-Si
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於希望未來可以將光電元件與電子元件積體化,而製作電子元件時大部分的基板是矽,近年氮化鎵晶圓廠商開始商品化氮化鎵磊晶在矽基板(GaN-on-Si)。此研究是本實驗室第一次製作與量測綠光共振腔發光二極體(Resonant cavity light-emitting diode, RCLED),上下反射鏡分別為晶面/ITO/空氣界面和銀鏡,成功做出綠光RCLED。根據文獻查閱結果,此研究是第一個以矽基板生長的氮化鎵來製作綠光RCLED。
    本研究也使用了本實驗室的矽擴散製程技術去製作電流阻擋層,去侷限我們的發光孔徑,孔徑分別為20µm、10µm、5µm。以離子深蝕刻機由背面移除矽基板做出通孔,並鍍上銀鏡,發現使用電子束蒸鍍機來製作銀鏡的反射效果很好,銀鏡製作完成時,光功率可成長了至少80%。
    我們也量測了元件的發光頻譜,峰值波長約為499nm(適合做Ti:sapphire晶體的幫浦光源),增益半高寬約為46nm。鍍製銀鏡後半高寬有明顯的共振效果,產生多個光縱模,間距約為16nm,符合理論值。光模的半高寬縮窄為約9nm,波峰波谷比值可達4.7。


    Due to the desire for future integration of optoelectronic and electronic components, and considering that silicon is commonly used as the substrate for electronic component fabrication, GaN-on-Si (Gallium Nitride grown on Silicon substrate) wafers have been commercialized by GaN wafer manufacturers in recent years. In this study, green resonant-cavity light-emitting diodes (RCLEDs) were fabricated and characterized for the first time in our laboratory. The upper and lower mirrors of the resonant cavity the wafer surface and a deposited silver mirror, respectively. According to the literature review, this research represents the first attempt to produce a green RCLED using a GaN-on-Si wafer.
    This work used our laboratory’s silicon diffusion process to pattern a current blocking layer, which confines the emission aperture. The aperture sizes were 20µm, 10µm, and 5µm. By using deep reactive ion etching to selectively remove the silicon substrate, via holes were created, and a silver mirror was deposited using an electron beam evaporator. It was found that the output light power increased by at least 80% indicating the silver mirror was effective.
    We also measured the optical spectrum of the green LEDs. The peak wavelength was approximately 499 nm, an appropriate wavelength for pumping Ti:sapphire crystal. The full width at half maximum (FWHM) of the gain profile was approximately 46 nm. After silver mirror deposition, several optical longitudinal modes were generated with a mode spacing of approximately 16 nm, in agreement with the theoretical number. The FWHM of each optical mode was approximately 9 nm. The peak-to-valley ratio could reach 4.7.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 1 第一章 緒論 1 1.1 前言 1 1.2 氮化鎵材料介紹 2 1.3 文獻回顧 6 2 第二章 共振腔發光二極體原理 19 2.1 共振腔發光二極體原理 19 2.2 銀鏡 20 2.2.1 反射率 20 2.2.2 穿透深度 21 2.3 分散式布拉格反射鏡 22 2.4 電流與光學侷限結構 26 2.5 矽擴散型電流侷限結構 32 3 第三章 儀器介紹 34 3.1 製程儀器介紹 34 3.1.1 旋轉塗佈機 34 3.1.2 光罩對準機 36 3.1.3 電漿增強式化學氣相沉積 38 3.1.4 感應耦合電漿式離子蝕刻機 40 3.1.6 電子束蒸鍍機 42 3.1.7 快速升溫退火爐 43 3.1.8 晶片研磨機 44 3.1.9 離子深蝕刻機(DRIE 46 3.1.10晶圓切割機 47 3.2 量測儀器介紹 48 3.2.1 I-V與L-I量測系統 48 3.2.2 表面輪廓儀 49 3.2.3 原子力顯微鏡 50 4 第四章 元件設計與製程 54 4.1元件設計 54 4.2 共振腔發光二極體元件製程 57 4.2.1 活化製程(Activation) 57 4.2.2 高台圖形製程(Mesa) 57 4.2.3 電流阻擋層製程(Current Blocking Layer, CBL) 59 4.2.4 二氧化矽絕緣層沉積 60 4.2.5 ITO透明導電層沉積 62 4.2.6 P型、N型電極沉積 62 4.2.7 基板研磨 63 4.2.8 離子深蝕刻製程 64 4.2.9 銀鏡鍍製 65 4.2.10電介質DBR鍍製 66 5 第五章 實驗結果與討論 68 5.1 RCLED元件在銀鏡鍍製前後的I-V與L-I量測結果 68 5.2 RCLED元件在銀鏡鍍製前後的發光光譜比較 68 5.3矽基板磊晶生長的氮化鎵(GaN-on-Si)與藍寶石基板的氮化鎵(GaN-on-Sapphire)做出的RCLED的結構比較 81 6 第六章 結論與未來展望 85 6.1結論 85 6.2未來展望 87 參考文獻 88

    [1] E. Fred. Schubert, “Light Emitting Diode” Cambridge University Press,
    New York ,2006.
    [2] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y.
    Davydov, “Single-crystalline InN films with an absorption edge between
    0.7 and 2 eV grown using different techniques and evidence of the actual
    band gap energy,” Appl. Phys. Lett., Vol. 84, p. 452 ,2004.
    [3] 牛振儀,「藉著電漿處理濕式蝕刻圖案化藍寶石基板提升氮化鎵發光二極體之
    效能」,國立交通大學碩士論文,第8頁 ,2012。
    [4] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical
    bandgap energy of wurtzite InN” Appl. Phys. Lett., Vol. 81, No. 3, pp.
    1246-1248 ,2002.
    [5] 方昭訓,「矽晶片基板製作氮化鎵基(GaN-based)LED回顧與展望」,TVS真空
    科技-技術報導,2010。
    [6] Horng, R-H., et al. "Effect of resonant cavity in wafer-bonded green InGaN
    LED with dielectric and silver mirrors." IEEE photonics technology letters
    18.3,2006: 457-459.
    [7] Higuchi, Yu, et al. "Room-temperature CW lasing of a GaN-based vertical-
    cavity surface-emitting laser by current injection." Applied Physics
    Express 1.12 ,2008: 121102.
    [8] Xu, H., et al. "Green VCSELs based on nitride semiconductors." Japanese
    Journal of Applied Physics 59.SO ,2020: SO0803.
    [9] Wei Cai et al., “GaN-on-Si resonant-cavity light-emitting diode
    incorporating top and bottom dielectric distributed Bragg reflectors,”
    Appl. Phys. Express 12 032004,2019.
    [10] Hamaguchi, Tatsushi, et al. "Room-temperature continuous-wave
    operation of green vertical-cavity surface-emitting lasers with a curved
    mirror fabricated on {20− 21} semi-polar GaN." Applied Physics Express
    13.4 ,2020: 041002.
    [11] RefractiveIndex.INFO-Refractive index database,
    Available:https://refractiveindex.info/
    [12] S.O.Kasap “Optoelectronics and Photonics: Principles and Practices”
    (2nd Edition) Pearson Education, New Jersey ,2001.
    [13] M. Ogura, W. Hsin, M. C. Wu, S. Wang, J. R. Whinnery, S. C. Wang, et al.,
    "Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐
    wavelength multilayers and lateral buried heterostructure," Applied
    Physics Letters, vol. 51, pp. 1655-1657, 1987.
    [14] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S.
    Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting
    laser," Applied Physics Letters, vol. 69, pp. 1-3, 1996.
    [15] Takao Someya,Koichi Tachibana,Jungkeun Lee,Takeshi Kamiya,and
    Yasuhiko Arakawa, "Lasing Emission from an In0.1Ga0.9N Vertical Cavity
    Surface Emitting Laser," Japanese Journal of Applied Physics, vol. 37, pp.
    L1424-L1426, 1998.
    [16] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y.
    Arakawa, "Room Temperature Lasing at Blue Wavelengths in Gallium
    Nitride Microcavities," Science, vol. 285, pp. 1905-1906, 1999.
    [17] 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [18] atsushi Hamaguchi, Masayuki Tanaka, and Hiroshi Nakajima, “A review
    on the latest progress of visible GaN-based VCSELs with lateral
    confinement by curved dielectric DBR reflector and boron ion
    implantation,” Japanese Journal of Applied Physics 58, SC0806 ,2019.
    [19] P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and
    H.-C. Kuo, "GaN-based vertical-cavity surface emitting lasers with sub-
    milliamp threshold and small divergence angle," Applied Physics Letters,
    V. 109, n. 24, 241103 ,2016.
    [20] 蕭宏,半導體製程技術導論-第三版, 全華圖書有限公司,台北,2014。
    [21] 國立台灣大學奈米機電系統研究中心, 光罩對準機Karl Suss MA6/BA6
    Available:https://nems.ntu.edu.tw/cp_n_165242.html,2024。
    [22] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,
    2013。
    [23] 甯榮椿,「使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比
    研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系,
    2010。
    [24] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體
    電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,
    2011。
    [25] 金達科技股份有限公司,Tegramin-20_chinese.pdf。
    [26] 國立台灣大學奈米機電系統研究中心,卓越一般訓練 Ver 1.0.pdf。.
    [27] 國立台灣大學奈米機電系統研究中心,晶圓切割機Disco DAD3221,
    Available:https://nems.ntu.edu.tw/cp_n_165147 .html
    [28] 致茂電子, "量測儀器及設備產品綜合型錄,2010:p7-7。
    [29] DektakXT Stylus Profiling System Brochure-BRUKER.pdf
    [30] G. Binning ,C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy,”
    Physical review letters, vol. 56, 1986
    [31] Atomic force microscopy specification.
    Available:https://www.nanoandmore.com/afm-info
    [32] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing
    Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied
    Physics, vol. 31, pp. L139-L142, 1992
    [33] 葉秉慧、余孟純、林家煥、黃景勤,“一種以矽擴散型電流阻擋層製作氮化鎵
    垂直共振腔面射型發光元件的方法”,中華民國專利發明第 I 563756 號,自
    2016 年 12 月 21 日至 2034 年 12 月 23 日。
    [34] 陳彥偉,「P型氮化鋁鎵之歐姆接觸研究」,國立交通大學電子物理所碩士學位
    論文,新竹,2006。
    [35] Wu, Haocheng, et al. "High output power GaN-based green resonant-
    cavity light-emitting diodes with trapezoidal quantum wells." IEEE
    Transactions on Electron Devices 67.9 (2020): 3650-3654.

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE