簡易檢索 / 詳目顯示

研究生: 簡孜伃
Tzu-yu Chien
論文名稱: 使用摻鉺光纖於上轉換綠光雷射之研究
Study on Green Light Laser Based on Up-Conversion of Er3+ Doped Fiber
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 陳南光
Nan-Kuang Chen
徐桂珠
Kuei-Chu Hsu
張嘉男
Chang-Chia Nan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 108
中文關鍵詞: 摻鉺光纖雙光子激發上轉換發光效應激發態吸收分佈式布拉格反射鏡
外文關鍵詞: erbium-doped fiber, two-photon stimulation, upconversion fluorescence, excited state absorption, distributed Bragg reflectors
相關次數: 點閱:219下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文由實驗觀察,證明利用鉺離子為雷射增益介質的摻鉺光纖,有可能實現了雙光子激發之綠光雷射。
    由980 nm泵激雷射激發摻鉺光纖所產生的上轉換發光效應,從鉺離子能階分析和實驗結果表明摻鉺光纖中的綠色螢光放射本質為上轉換發光,波長為547 nm和537 nm,其產生機制為激發態吸收效應,由理論和實驗兩方面分析摻鉺光纖放大器(EDFA)泵激功率和信號功率這兩個放大參數對上轉換綠色螢光的影響,並利用MATLAB數值軟體,模擬分析鉺離子居量反轉與光纖的最佳長度。由實驗與模擬得知,用於上轉換機制的掺鉺光纖最佳長度為8 m (Fibercore EDF-M5),而用於摻鉺光纖放大器最佳長度應為2 m (Fibercore EDF-DF1500L)。
    藉由雷射震盪模型,試推導出在上轉換機制下內藏於其中的ASE現象,經由實驗觀察螢光放射彼此間的競合,證實上轉換機制下可產生一串接的雷射波長,此結果使我們嘗試設計一綠光雷射,其共振腔反射波長可成功讓800 nm及1530 nm高穿透率,則可避免兩者螢光在共振腔裡與綠光螢光產生模態競爭。結合磊晶布拉格反射鏡作為雷射之共振腔,初步做出由980 nm雷射泵激摻鉺光纖產生的上轉換綠光雷射。實驗結果得到使用摻鉺光纖8 m、泵激功率150 mW、共振腔兩面反射率為99%及50%時,綠光雷射輸出功率為70.29 mW。未來有望實現綠光上轉換光纖雷射。


    In this thesis, we have achieved observing the visible upconversion emissions of an erbium-doped fiber (EDF) under 980 nm infrared laser excitations. A green upconversion erbium-doped fiber laser with two-photon stimulation is being established successfully.
    Analysis show that the upconversion fluorescence is green light one with wavelengths of 547 nm and 537 nm due to excited state absorption (ESA). Both theoretical and experimental studies are carried out to investigate the effects of signal power and pumping power on the Er3+ doped fiber amplifier (EDFA) caused by green fluorescence. We also simulated to get an optimal length of population inversions by Matlab software.Based on the experimental and simulated results, the most suitable length of EDF is suggested to be 8m that absorption 5dB/m at pump wavelength in green upconversion fluorescence schemes and conclude EDFA pumped at 980 nm has an optimal length is 2m that absorption 12 dB/m.
    To clarify the effect of the amplified spontaneous emission (ASE) spectra of oscillator model, we obtained cascaded free-running two-wavelength 800 nm and 1530 nm lasing from EDF. From the results of cascaded lasers, we obtained the effects of 800 nm and 1530 nm emissions should be considered for constructing a green upconversion laser. That is to say, for low-power operation of a green laser, the effects of 800 nm and 1530 nm emissions are not a big problem. Even so, it is better that the cavity mirrors for green laser are designed as high transmission at 800- and 1530 nm to avoid the competition between green laser and cascaded 800 nm and 1530nm emissions. We assumed that such a cavity with combination of distributed Bragg reflectors (DBR) mirror can support green lasing.Experimentally study the green upconversion laser, using DBR mirror of 99% and 50% reflectivity as well as 8m EDF in 150mW pump power and 70.29mW green laser output power are achieved.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 論文架構 第二章 摻鉺光纖上轉換機制 2.1 上轉換發光機制 2.1.1 激發態吸收(Excited State Absorption;ESA) 2.1.2 能量傳遞上轉換(Energy Transition Upconversion) 2.1.3 光子雪崩( Photon Avalanche) 2.2 稀土離子中上轉換發光機制 2.3 稀土Er3+的綠光上轉換發光 2.4 雙光子吸收現象 第三章 摻鉺光纖放大器中上轉換螢光效應 3.1 上轉換綠光放射 3.2 泵激功率對上轉換螢光的影響 3.2.1 理論分析(速率方程式) 3.2.2 實驗結果與討論 3.3 訊號功率對上轉換螢光功率的影響 3.3.1 模擬及理論分析 3.3.2 實驗結果與討論 3.3.3 結論 3.4 數值模擬-最佳長度(Optimal Length) 3.4.1 理論分析 3.4.2 數值模擬與討論 3.4.3 實驗結果與討論 3.4.4 本章小結 第四章 上轉換螢光之競合 4.1 上轉換機制之螢光ASE 4.1.1 理論分析(Theoretical models) 4.1.2 實驗架構 4.1.3 實驗結果與討論 4.2 寬頻譜鏡面增強綠光螢光 4.2.1 實驗架構 4.2.2 實驗結果 4.2.3 結果與討論 第五章 上轉換綠光雷射 5.1 可見光雷射光源 5.1.1 雷射混光共振腔 5.1.2 光纖雷射簡介 5.2 上轉換綠光雷射 5.2.1 共振腔製作 5.2.3 實驗架構與結果 5.3 改善架構 5.3.1 DBR鏡面加上IR-cut Filter 5.3.2 光纖光柵之綠光雷射 5.4 結論 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻 附件一

    [1]M. Takahashi, R. Kanno, Y. Kawamoto, S. Tanabe and K. Hirao, “Compositional dependence of Er3+ upconversion luminescence in MF-LiF-ZrF4 galsses(M:alkali metals),” J. Non-Cryst. Solids, vol. 168, no. 1-2, pp. 137-143, 1994.
    [2]G. Keiser, “Optical fiber communications,” 4 edition, TATA McGRAW HILL, 2007.
    [3]S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda and G. Wegner, "Up-conversion fluorescence: noncoherent excitation by sunlight," Phys. Rev. Lett., vol. 97, no. 14, 2006
    [4]M.J.F. Digonnet, “Rare-earth-doped fiber lasers and amplifiers,” CRC Press, Canada, 2001.
    [5]M. Shojiya and M. Takahashi, “Optics transition of Er3+ and Yb3+ codoped fluoroindate glasses,” J. Appl. Phys., vol. 82, no12, pp. 6259-6266, 1997.
    [6]K. Soak. M. Tsuda and S. Sakuragi,. “Effects of chloride introduction on the optical properties 520nm the upconversion emission with 980 nm excitation of Er3+ in ZBLAN fluoride glass” J. Non-Cryst. Solids, pp. 222-272, 1997.
    [7]Y. Wang and J. Ohwaki, “High efficiency infrared to visible upconversion of Er3+ in BaCl2,” J. Appl. Phys., vol. 74, no. 2, pp. 1272-1275, 1993
    [8]T.J. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium-doped fluorozirconate fibre,” Electron. Lett., vol. 27, no 20, pp. 1785-1786, 1991.
    [9]F. Kaczmarek and J. Karolczak, “Optical pumping of an infrared-to-visible upconversion fiber laser,” Opt. Appl., vol. 35, no. 4, pp. 913-918, 2005.
    [10]J.F. Massicott, M. C. Brierley, R. Wyatt, S.T. Davey, and D. Szebesta,“Low threshold, diode-pumped operation of a green, E3+ doped fluoride fiber laser,” Electron. Lett., vol. 29, no 24, pp. 2119-2120, 1993.
    [11]J. Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett., vol. 28, no 2, pp. 111-113, 1992.
    [12]D. Piehler, D. Craven, N. Kwong, and H. Zarem, “Laser diode pumped red and green upconversion fibre laser,” Electron. Lett., vol. 29, no 21, pp. 1857-1858, 1993.
    [13]D. Piehler and D. Craven, “InGaAs laser pumped green upconversion fiber laser,” Conference Lasers and ElectroOptics, 1994, Anaheim, CA, paper CMK4.
    [14]B.J. Chen, H.Y. Wang, W.P. Qin, W.H. Cao, W. Xu and S.H. Huang, “Fluoride-oxide glass for high efficiency upconversion from IR to green,” Spectrosc. Spectr. Anal., vol. 20, no 2, pp. 257-259, 2000.
    [15]K. Soga, M. Tsuda, S. Sakuragi, H. Inoue and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids, vol. 222, no 14, pp. 272-281, 1997.
    [16]Y. Wang and J. Ohwaki, “High-efficiency infrared-to-visible upconversion of Er3+ in BaCl2,” J. Appl. Phys., vol. 74, no 2,pp. 1272-1278, 1993.
    [17]M.D. Shinn, W. A. Sibley, M. G. Drexhage and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B, vol. 27, no 11, pp. 6635-6648, 1983.
    [18]P.A. Krug, M.G. Sceats, G.R. Atkins, S.C. Guy and S.B. Poole, “Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm,” Optics Letter, vol. 16, no 24, pp. 1976-1978, 1991.
    [19]O. Pfister, W.J. Brown, M.D. Stenner and D.J. Gauthier “Polarization instabilities in a two-photon laser,” Phys. Rev. Lett., vol. 86, no 20, pp. 4512-4515, 2001.
    [20]L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phy. Lett., vol. 19, pp. 44-47, 1971.
    [21]S.G. Grubb, K.W. Bennett, R.S. Cannon and W.F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett., vol. 28, no 13, pp. 1243-1244, 1992.
    [22]S. Sanders, R.G. Waarts, D.G. Mehuys and D.F. Welch, Conference on Laser and ElectroOptics, vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), CPD23.
    [23]P. Myslinksi, D.Nguyen and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 15, no 1, pp. 112-120, 1997.
    [24]E. Maurice, G. Monnom, B. Dussardier and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbiumdoped silica fibers,” Opt. Lett., vol. 20, no. 24, pp. 2487–2489, 1995.
    [25]R. Pramod, R. Watekar, M. L. N. Goswami, and H. N. Acharya, “Er-doped concentric-cores optical fiber for simultaneous amplification and compensation of positive dispersion,” J. Chin. Opt. Lett., vol. 2, no. 1, pp. 12~14, 2004.
    [26]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology”, Academic Press, 1999.
    [27]P. Myslinksi, D.Nguyen and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 15, no 1, pp. 112-120, 1997.
    [28]王俊容,“光纖光柵與光循環器組成之光纖雷射,”國立台灣科技大學碩士論文,2005。
    [29]E. Snoeks, G.N.V.D. Hoven and A. Polman, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” Journal of Optical Society of America B, vol. 12, no 8, pp. 1468-1474, 1995
    [30]L.A. Wang and C.D. Su, “Modeling of a double-pass backward er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol., vol. 17, no 11, pp. 2307-2315, 1999.
    [31]H.T. Amorim, M.T.D. Araujo, E.A. Gouveia, A.S. Gouveia, J.A. Medeiros and A.S.B. Sombra, “Infrared to visible up-conversion fluorescence spectroscopt in er3+-doped chalcogenide glass,” J. Lumines., vol. 78, no 4, pp. 271-277, 1998.
    [32]R. Caspary, “Applied rare-earth spectroscopy for fiber laser optimization,” PhD thesis in Technical University at Braunschweig, 2001.
    [33]M.J.F. Digonnet, “Rare earth doped fiber lasers and amplifiers,” Marcel Dekker, 1993.
    [34]CEATAC,“住田光学ガラス,青色半導体レーザと光ファイバを組み合わせた白色光源を高出力化,”Tech-On!, 2007.
    [35]T. Erdogan, “Fiber grating spectra,” J. Lightwave technol., vol. 15, no 8, pp. 1277-1294, 1997.
    [36]D.S. Funk and J.G. Eden, “Glass-fiber lasers in the ultraviolet and visible david,” IEEE J. of Selected Topics in Quantum Electronics, vol. 1, no 3, pp. 784-791, 1995.
    [37]R.S. Quimby, W.J. Miniscalco and B.A. Thompson, “Upconversion and 980-nm excited-state absorption in erbium-doped glass,” SPIE, vol. 1789, pp. 50-57, 1993.

    QR CODE