簡易檢索 / 詳目顯示

研究生: 田詠傑
Yong-Jie Tian
論文名稱: 橫向抓枝機器人之設計與實作
Design and Implementation of a Transverse Brachiation Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃安橋
An-Chyau Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 橫向抓枝爬壁機器人抓枝機器人運動控制
外文關鍵詞: transverse brachiation, wall-climbing robot, brachiation robot, locomotion control
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對台灣住宅外牆為目標開發可於壁面移動的機器人,在台灣的住宅外牆時常可見到窗台、雨遮、遮雨棚及屋簷等多樣化的設施,這些外牆的凸起物對於大部分的爬壁機器人來說是必須克服的障礙物,為此我們提出以攀岩者於壁面橫向攀爬的運動模式為基礎結合極限運動員抓枝動作開發特殊的移動方式使這些障礙物成為機器人移動的助力。本研究透過模仿攀岩者於壁面橫向攀爬的攀附方式設計可抓握壁面凸器物的夾持機構,並藉由分析極限運動員的抓枝動作建立一連串的動作流程為機器人設計橫向抓枝運動控制器。本研究以雙臂及身軀結合下肢為基本架構設計攀爬機器人,為了達成抓枝動作我們於夾持機構與手臂之間設計一特殊的手腕關節,使其在擺盪階段可利用其欠驅動特性擺盪下肢累積動能使整個系統擺幅逐漸加大,同時配合手臂動作來達到抓枝移動的目的。本研究參考戶外常見之壁面環境設計機器人攀爬實驗場景驗證所設計機器人及運動控制器的可行性,實驗結果顯示所開發之機器人不僅可成功抓握具間隔之同水平高度凸起物,亦能抓握具有高度落差的凸起物。


This thesis presents a transverse brachiation robot which could be applied to Taiwan's residential exterior wall-climbing applications. There is a variety of ledges which are commonly attached to Taiwan's residential exterior wall including windowsills, awning, eaves, and so on. However, most of the existing wall-climbing robots all suffer from these ledges treated as obstacles. In this research, we refer to special locomotion of extreme athletes in which they swing their bodies and grab the consecutive ledges on the wall to move forward transversely, i.e., transverse brachiation. This study designs a novel gripper which can hold on the ledge on the wall by mimicking the grabbing motion of the rock-climbers and analyzes the athlete's unique brachiation locomotion to establish a series of motion flow and design a locomotion controller suitable for such transverse brachiation. We design a brachiation robot which combines a body with two arms and a tail and particularly designs a robot wrist joint between gripper and arm so that we can swing the robot tail smoothly and accumulate the system energy using the under-actuated property of designed wrist at the swing phase. The robot is then swung up repetitively with the coordination of two arms for grabbing the targeted ledge. For experiments, we set up testing scenarios with Aluminum extrusion bars to verify the feasibility of the developed robot and locomotion control strategies. The experimental results reveal that the developed robot can successfully grab the targeted ledge at the same height as well as a ledge with different heights.

摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 第二章 系統設計概念及構想 第三章 系統架構 第四章 系統動態模型推導 第五章 系統動作控制設計及模擬 第六章 橫向抓枝實驗結果與討論 第七章 結論與未來目標 參考文獻

[1] J. Li and X. S. Wang, "Novel omnidirectional climbing robot with adjustable magnetic adsorption mechanism," in 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 28-30 Nov. 2016 of Conference, pp. 1-5, doi: 10.1109/M2VIP.2016.7827289.
[2] J. Xiao et al., "Rise-Rover: A wall-climbing robot with high reliability and load-carrying capacity," in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-9 Dec. 2015 of Conference, pp. 2072-2077, doi: 10.1109/ROBIO.2015.7419079.
[3] A. Parness et al., "LEMUR 3: A limbed climbing robot for extreme terrain mobility in space," in 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017 of Conference, pp. 5467-5473, doi: 10.1109/ICRA.2017.7989643.
[4] D. Longo and G. Muscato, "The Alicia(3) climbing robot," (in English), IEEE Robot. Autom. Mag., Article vol. 13, no. 1, pp. 42-50, Mar 2006, doi: 10.1109/mra.2006.1598052.
[5] J. Shen and Y. Liu, "Design and analysis of an obstacle-crossing wall-climbing robot mechanism," in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 8-12 June 2015 of Conference, pp. 2067-2072, doi: 10.1109/CYBER.2015.7288267.
[6] D. Santos et al., "Gecko-inspired climbing behaviors on vertical and overhanging surfaces," in 2008 IEEE International Conference on Robotics and Automation, 19-23 May 2008 of Conference, pp. 1125-1131, doi: 10.1109/ROBOT.2008.4543355.
[7] B. Wolfram et al., "Design of a Bio-inspired Dynamical Vertical Climbing Robot," in Robotics: Science and Systems III: MITP, 2008, p. 1.
[8] W. R. Provancher et al., "ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot," IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, pp. 897-906, 2011, doi: 10.1109/TMECH.2010.2053379.
[9] "雨遮屋簷不登記今上路,經濟日報." Available from: https://money.udn.com/money/story/5621/2905930.
[10] "台北鋁門窗推薦." Available from: https://swan-11.com.tw/about-A01.html.
[11] "台中大雅秘密長崎蛋糕。福久長崎蛋糕。只賣三種口味先預約再取貨才不會撲空。." [Online]. Available: https://sunnylife.tw/nagaski-castella/.
[12] "5月1日實施屋簷雨遮登記但不計價." Available from: http://www.mygonews.com/news/detail/news_id/3394/5%E6%9C%881%E6%97%A5%E5%AF%A6%E6%96%BD%E5%B1%8B%E7%B0%B7%E9%9B%A8%E9%81%AE%E7%99%BB%E8%A8%98%E4%BD%86%E4%B8%8D%E8%A8%88%E5%83%B9.
[13] "American Ninja Warrior | Can You Rise to the Challenge?" Available from: https://sites.psu.edu/ninjastyle/.
[14] T. Fukuda et al., "Brachiation type of mobile robot," in Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, 19-22 June 1991 of Conference, pp. 915-920 vol.2, doi: 10.1109/ICAR.1991.240556.
[15] H. Kajima et al., "Energy-based swing-back control for continuous brachiation of a multilocomotion robot," International Journal of Intelligent Systems, vol. 21, no. 9, pp. 1025-1043, 2006, doi: 10.1002/int.20174.
[16] A. Meghdari et al., "Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot," Robotica, vol. 31, no. 7, pp. 1119-1129, 2013, doi: 10.1017/S0263574713000362.
[17] A. K.-Y. Lo et al., "Model-Based Design and Evaluation of a Brachiating Monkey Robot with an Active Waist," Applied Sciences, vol. 7, no. 9, p. 947, 2017. [Online]. Available: https://www.mdpi.com/2076-3417/7/9/947.
[18] N. Morozovsky and T. Bewley, "SkySweeper: A low DOF, dynamic high wire robot," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3-7 Nov. 2013 of Conference, pp. 2339-2344, doi: 10.1109/IROS.2013.6696684.
[19] E. Davies et al., "Tarzan: Design, Prototyping, and Testing of a Wire-Borne Brachiating Robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 of Conference, pp. 7609-7614, doi: 10.1109/IROS.2018.8593823.
[20] S. Farzan et al., "Modeling and Control of Brachiating Robots Traversing Flexible Cables," in 2018 IEEE International Conference on Robotics and Automation (ICRA), 21-25 May 2018 of Conference, pp. 1645-1652, doi: 10.1109/ICRA.2018.8461036.
[21] M. W. Spong, "Partial feedback linearization of underactuated mechanical systems," in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), 12-16 Sept. 1994 of Conference, vol. 1, pp. 314-321 vol.1, doi: 10.1109/IROS.1994.407375.
[22] M. W. Spong, "Swing up control of the Acrobot," in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 8-13 May 1994 of Conference, pp. 2356-2361 vol.3, doi: 10.1109/ROBOT.1994.350934.
[23] "TAIWANROCKS.NET." Available from: https://taiwanrocks.net/hangboarding-101/.
[24] "Discovery kit with STM32F407VG MCU - STMicroelectronics." Available from: https://www.st.com/resource/en/user_manual/dm00039084.pdf.
[25] "Maxon." Available from: https://www.maxongroup.com.tw/maxon/view/content/index.
[26] "DYNAMIXEL MX-28AT - ROBOTIS." Available from: http://www.robotis.us/dynamixel-mx-28at/.
[27] "Arduino y Dynamixel AX-12." Available from: https://savageelectronics.blogspot.com/2011/01/arduino-y-dynamixel-ax-12.html.
[28] "Amazon.com: Hiwonder LD-20MG 20kg Full Metal Gear Digital Servo High Torque, Aluminium Case for Robot (Control Angle 180)." [Online]. Available: https://www.amazon.com/LewanSoul-LD-20MG-Standard-Digital-Aluminium/dp/B073F92G2S?language=en_US.
[29] "GY953 AHRS Electronic Compass Module w/ Tilting Compensation - Blue." [Online]. Available: https://www.dx.com/p/gy953-ahrs-electronic-compass-module-w-tilting-compensation-blue-2054339#.XTUYc_IzYuU.
[30] V. S. Bagad, Mechatronics. Technical Publications, 2009.
[31] G. Tao and F. L. Lewis, Adaptive Control of Nonsmooth Dynamic Systems. Springer London, 2013.
[32] 吴伟国 and 李海伟, "仿猿双臂手机器人连续摆荡移动优化与实验," Journal of Harbin Institute of Technology, vol. 51, no. 7, pp. 33-41, 2019.

無法下載圖示 全文公開日期 2024/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE