簡易檢索 / 詳目顯示

研究生: 謝宜杭
Yi-Hang Hsieh
論文名稱: 應用擴增實境於即時實體模型互動之直覺式城巿規模風場可視化系統
Using Augmented Reality on Intuitive City-Scale Wind Field Visualization Framework with Real-time Physical Model Interaction
指導教授: 賴祐吉
Yu-Chi Lai
口試委員: 賴祐吉
Yu-Chi Lai
戴文凱
Wen-Kai Tai
花凱龍
Kai-Lung Hua
林士勛
Shih-Syun Lin
黎益肇
Yi-Chao Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 擴增實境流場壓縮流場可視化八元樹
外文關鍵詞: Augmented Reality, Flow Field Compression, Flow Field Visualization, Octree
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風工程的可視化能夠帶給使用者一個觀察計算流體力學模擬數據的管道,通過將風的流動以等值面、流線與渦度等可視化效果呈現,能夠一眼就看出整個風場的特性,並基於此視角進行城市風場的討論與設計。以往,在布置流場可視化展覽時,受限於場地大小與專業器材的搬遷,在策畫一場展覽時往往需要花費大量時間與金錢,使得風工程教育相較於其他科學教育資源更稀少。故將擴增實境與流場可視化結合,以在節省布置成本的同時,也能用互動式的直覺體驗促進使用者的學習興趣。
    本研究透過將客戶端與伺服端分離,來解決移動設備不足以儲存龐大流場資料和運算效能不足的問題,同時利用畫面串流技術串接客戶端與伺服端。客戶端僅負責使用者介面操作與相機移動運算,將計算量較龐大的渲染與檔案載入作業分配在伺服端進行。此外,本系統也對計算流體力學的模擬資料進行壓縮與資料結構切割,據以減少載入時的時間成本,使得客戶端能夠順暢的以30FPS與本系統進行互動。本研究亦針對系統內的各個環節進行實驗,並且設計一個評估標準以決定每個環節中最符合前述系統情境的選擇。另外也設計了一些情境與問題,在進行使用者研究過後,證明此系統確實能夠引起目標使用者的學習興趣,同時增加使用者在學習風場特性時的效率。


    The visualization of wind engineering can bring users a way to observe the simulated data of Computational Fluid Dynamics. By presenting the wind flow as contour, streamline, and vorticity, users can see the characteristics of the whole wind field at a glance.Also,discuss and design the urban wind field based on this perspective. In the past, due to the limitation of the size of the venue and the relocation of professional equipment, it often takes a lot of time and money to plan an exhibition, which makes wind engineering education resources scarce compared to other science education resources. Therefore, combining augmented reality with visualization of the flow field can save setup costs while promoting users' interest in learning with interactive and intuitive experiences.
    This study solves the problems of insufficient mobile devices for storing large amount of stream data and insufficient computing performance by separating the client side and the server side, and at the same time, using screen streaming technology to connect the client side and the server side. The client side is only responsible for user interface operation and camera movement, while the rendering and file loading operations, which are more computationally intensive, are assigned to the server side. In addition, the system also compresses and cuts the computational fluid dynamics simulation data into custom data structure to reduce the loading time cost, so that the client can interact with the system smoothly at 30FPS. An evaluation criterion was designed to determine the most suitable choice for each session in the aforementioned system context. In addition, some scenarios and questions were designed, and after user studies, the system was proven to be able to arouse the interest of the target users and to increase the efficiency of the users in learning the characteristics of the wind field.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 1 緒論 1 1.1 研究目標 2 1.2 主要貢獻 2 1.3 論文架構 3 2 相關研究 5 2.1 結合擴增實境與虛擬實境之科學視覺化 5 2.2 流場表示式 6 2.3 時序資料壓縮 6 3 系統介紹 8 4 系統實現 10 4.1 模型與流場資料準備 10 4.2 獲取相機位姿 11 4.3 尤拉法與拉格朗日法流場 16 4.4 流場可視化 26 4.5 伺服端/客戶端串流 27 4.6 相機位姿濾波 28 5 評估與測試結果 29 5.1 成果展示 29 5.2 測試環境與評估標準 32 5.3 渲染管線評估 33 5.4 流場表示式評估 35 5.5 資料結構評估 36 5.6 壓縮方法評估 38 5.7 其他機制與參數評估 42 5.8 使用者實效研究 44 5.9 專家意見回饋 48 6 結論與展望 50 參考文獻 51 授權書 55

    [1] A. FombonaPascual, J. Fombona, and E. VázquezCano, “Vr in chemistry, a review
    of scientific research on advanced atomic/molecular visualization,” Chem. Educ.
    Res. Pract., vol. 23, pp. 300–312, 2022.
    [2] J. T. Bell and H. S. Fogler, “Investigation and application of virtual reality as an educational tool,” 1995.
    [3] E. Omurtak and G. Zeybek, “The effect of augmented reality applications in biology
    lesson on academic achievement and motivation,” Journal of Education in Science
    Environment and Health, vol. 8, no. 1, pp. 55 – 74, 2022.
    [4] T. Grubb, W. B. Garry, M. A. Brandt, T. Ames, D. C. Morton, D. Lagomasino,
    S. Schollaert Uz, and N. Memarsadeghi, “Science Data Visualization in AR/VR for
    Planetary and Earth Science,” in AGU Fall Meeting Abstracts, vol. 2018, pp. IN53B–
    03, Dec. 2018.
    [5] F. Bruno, F. Caruso, L. Napoli, and M. Muzzupappa, “Visualization of industrial en
    gineering data in augmented reality,” Journal of Visualization J VIS , vol. 9, pp. 319–
    329, 09 2006.
    [6] J. Yao, Y. Lin, Y. Zhao, C. Yan, L. Changlin, and P. F. Yuan, “Augmented reality
    technology based wind environment visualization,” 2018.
    [7] L. Rosenblum, R. Earnshaw, J. Encarnação, A. Kaufman, S. Klimenko, G. Nielson,
    F. Post, and D. Thalmann, “Scientific visualization—advances and challenges,” 01
    1994.
    [8] S. Röttger, M. Schulz, W. Bartelheimer, and T. Ertl, “Flow visualization on hierar
    chical cartesian grids,” 01 2001.
    [9] I. Sadarjoen, W. De Leeuw, and F. Post, “Visualization techniques for curvilinear
    grids,” 08 2001.
    [10] F. Pighin, J. M. Cohen, and M. Shah, Modeling and Editing Flows Using Advected
    Radial Basis Functions, p. 223–232. Goslar, DEU: Eurographics Association, 2004.
    [11] S. Lind, B. Rogers, and P. Stansby, “Review of smoothed particle hydrodynamics:
    towards converged lagrangian flow modelling,” Proceedings of the Royal Society A:
    Mathematical, Physical and Engineering Sciences, vol. 476, p. 20190801, 09 2020.
    [12] T. Sikora, “The mpeg4 video standard verification model,” IEEE Transactions on
    Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 19–31, 1997.
    [13] J.W. Chen, C.Y. Kao, and Y.L. Lin, “Introduction to h.264 advanced video cod
    ing,” vol. 2006, pp. 6 pp.–, 02 2006.
    [14] W. Zhao, T. Onoye, and T. Song, “Hierarchical structurebased fast mode decision
    for h.265/hevc,” IEEE Transactions on Circuits and Systems for Video Technology,
    vol. 25, no. 10, pp. 1651–1664, 2015.
    [15] P. J. Burt and E. H. Adelson, The Laplacian Pyramid as a Compact Image Code,
    p. 671–679. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987.
    [16] R. McNeel et al., “Rhinoceros 3d, version 6.0,” Robert McNeel & Associates, Seattle,WA, 2010.
    [17] O. Foundation, “OpenFOAM – free open source CFD v2112.” http://www.
    openfoam.org/, 2021.
    [18] J. Smagorinsky, “General circulation experiments with primitive equations. month
    weather review 91(3),” pp. 99–164, 1963.
    [19] C.C. Li, Y.C. Lai, N.S. Syu, H.N. Guo, D. Todorov, and C.Y. Yao, “Ezcam:
    Wyswyg camera manipulator for path design,” IEEE Transactions on Circuits and
    Systems for Video Technology, vol. 27, no. 8, pp. 1632–1646, 2017.
    [20] R. Van Krevelen and R. Poelman, “A survey of augmented reality technologies,
    applications and limitations,” International Journal of Virtual Reality (ISSN 1081
    1451), vol. 9, p. 1, 06 2010.
    [21] W. Li, A. Nee, and S. K. Ong, “A stateoftheart review of augmented reality in en
    gineering analysis and simulation,” Multimodal Technologies and Interaction, vol. 1,
    p. 17, 09 2017.
    [22] P. Han and G. Zhao, “A review of edgebased 3d tracking of rigid objects,” Virtual
    Reality & Intelligent Hardware, vol. 1, no. 6, pp. 580–596, 2019.
    [23] R. M.C. Francisco J.RomeroRamirez, Rafael MuñozSalinas, “”Speeded up de
    tection of squared fiducial markers”,” Image and Vision Computing, vol 76, pages
    3847 , 2018.
    [24] RafaelMuñozSalinas and R.C. Manuel J.MarínJimenez, Enrique YeguasBolivar,
    “”Mapping and localization from planar markers”,” Pattern Recognition, Vol 73,
    2018, pages 158171 , 2018.
    [25] D. C. Brown, “”Decentering distortion of lenses,”,” Photogrammetric Engineering,
    1966.
    [26] A. Roberts, W. Browne, and C. Hollitt, “Accurate marker based distance measure
    ment with single camera,” pp. 1–6, 11 2015.
    [27] D. G. Lowe, “Distinctive image features from scaleinvariant keypoints,” 2003.
    [28] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
    to sift or surf,” pp. 2564–2571, 2011.
    [29] S. GarridoJurado, R. MuñozSalinas, F. MadridCuevas, and M. MarínJiménez,
    “Automatic generation and detection of highly reliable fiducial markers under oc
    clusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.
    [30] Y.C. Li, Y.J. Lai, R.Q. Lan, and Y.H. Xie, “Research on integration of ar and
    cfd for establishing flow visualization technical in wind tunnel laboratory.” https:
    //www.grb.gov.tw/search/planDetail?id=13365615, 2020.
    [31] W. Wang, Y. Zhang, G. Ge, Q. Jiang, Y. Wang, and L. Hu, “A hybrid spatial indexing
    structure of massive point cloud based on octree and 3d r*tree,” Applied Sciences,
    vol. 11, no. 20, 2021.
    [32] U. Assarsson and T. Moller, “Optimized view frustum culling algorithms,” 03 2000.
    [33] S. Lefebvre, S. Hornus, and F. Neyret, “Chapter 1 octree textures on the gpu,” 01
    2005.
    [34] S. Shirayama and K. Kuwahara, “Flow visualization in computational fluid dynam
    ics,” International Journal of High Performance Computing Applications IJHPCA ,
    vol. 4, pp. 66–80, 06 1990.
    [35] S. Ristic, “Flow visualisation techniques in wind tunnels part i –non optical meth
    ods,” Scientific Technical Review LVII N., vol. 1, 01 2007.
    [36] G. Welch and G. Bishop, “An introduction to the kalman filter,” Proc. Siggraph
    Course, vol. 8, 01 2006.
    [37] J. Behley, V. Steinhage, and A. B. Cremers, “Efficient Radius Neighbor Seach in
    Threedimensional Point Clouds,” in Proc. of the IEEE International Conference on
    Robotics and Automation (ICRA), 2015.
    [38] P. Lindstrom, “Fixedrate compressed floatingpoint arrays,” IEEE Transactions on
    Visualization and Computer Graphics, vol. 20, 08 2014.
    [39] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
    [40] R. Kirk, Kirk, Roger E. (2013). Experimental design: Procedures for the behavioral
    sciences (4th ed.). Thousand Oaks, CA: Sage. 06 2013.

    無法下載圖示 全文公開日期 2026/06/19 (校內網路)
    全文公開日期 2028/06/19 (校外網路)
    全文公開日期 2028/06/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE