簡易檢索 / 詳目顯示

研究生: 彭子恩
Tz-En Peng
論文名稱: 高導電度層狀硫屬化合物之晶體成長與特性研究
Growth and characterization of highly conductive-layered chalcogenide crystals
指導教授: 何清華
Ching-Hwa Ho
口試委員: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
李奎毅
Kuei-Yi Lee
林彥甫
Yen-Fu Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 化學氣相傳導法高導電度層狀硫屬化合物X-Ray晶格繞射拉曼散射光譜光穿透光譜熱調制反射光譜電子能量損失譜四點電阻率實驗霍爾效應I-V光電流響應量測光催化降解實驗熱電量測實驗
外文關鍵詞: Chemical vapor transport, highly conductive-layered chalcogenide crystals, XRD, RAMaker Raman, Photo transmission, Thermoreflectance, Electron Energy Loss Spectroscopy, Four-point resistivity, Hall effect, Photo V-I, Photodegradation, Thermoelectric
相關次數: 點閱:531下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將研究高導電度硫屬化合物之傳輸特性,首先,我們使用化學氣相傳導法(Chemical Vapor Transport,CVT)並以碘作為傳導劑成長二硫化鈦(TiS2)與二硒化鈦(TiSe2) 之層狀化合物,並對此晶體進行晶體結構分析,及光學、光化學、電學及熱電量測之研究及討論,並且一同探討實驗室成長出高導電度晶體 ─ 硫化錫(SnS)與硒化錫(SnSe)之熱電特性。
我們利用X-Ray晶格繞射分析儀 (X-Ray Diffraction,XRD) 分析TiS2與TiSe2系列之結構皆為六方1T堆疊相,晶格常數TiS2為a=3.393 Å,c=5.719 Å,而TiSe2的為a=3.502 Å,c=5.997 Å,以雷射為激發源量測拉曼散射光譜 (Raman Scattering Spectra) 可得到拉曼模態Eg與A1g。透過X光繞射與拉曼散射光譜可確認SnS與SnSe兩者均為正交晶系,且會因光的偏振方向差異而使某些震動訊號呈現選擇定律,因此晶軸具有極化特性,藉由電子能量損失譜 (Electron Energy Loss Spectroscopy,EELS) 量測實驗及光穿透光譜(Photo Transmission,Tr) ,分別對樣品進行實驗,可觀測TiS2與TiSe2能隙位置分別在1eV與0.8eV,在電漿共振光譜中與霍爾量測結果可發現,其濃度高達〖10〗^20-〖10〗^21 〖cm〗^(-3),且兩者皆為高導電度層狀化合物。在I-V曲線中與光催化降解實驗可得知,TiS2與TiSe2皆不會因照光而產生光降解效果,並可證明兩者呈現金屬性電子海傳輸之特性。由四點電阻率量測中,可以發現TiS2隨溫度變化之電阻率,呈現金屬特性;而TiSe2隨溫度變化之電阻率,其200K之相轉溫度為二階結構相變,即為材料特性-電荷密度波。此特性可望用來製作效率高且多樣化的電子元件;在熱電實驗中,判斷TiS2與TiSe2皆為N型半導體,而SnS與SnSe均為P型半導體,其中,SnSe在室溫300K時,熱電優值約為0.15,且具有高的導電性與低的熱傳導係數,SnSe極具有潛力發展於熱電元件上。
綜合以上實驗結果,提出高導電度硫屬化合物之傳輸特性,TiS2與TiSe2證實兩者都有一個窄能隙且具有高導電度及高濃度,可望用來研究新型之電子元件;SnS與SnSe皆具有極化特性,可做光學異向特性之應用,其中,SnSe有好的熱電響應,得以提供為未來熱電材料之應用。


In this thesis, we study transfer characteristic of highly conductive-layered chalcogenide crystals. We have synthesized and grown layered semiconductors of TiS2 and TiSe2 by chemical vapor transport (CVT) method using iodine as transport agent. Detailed characterization of the materials was carried out by using X-ray diffraction (XRD), Raman scattering, Transmittance, Electron Energy Loss Spectroscopy (EELS), modulation reflectance, Hall effect measurement, V-I measurement, photodegradation, four-point resistivity measurement and thermoelectric techniques. Meanwhile, we will also demonstrate the thermoelectric properties of highly conductive-layered chalcogenide crystals ─ SnS and SnSe.
According to the results of X-ray diffraction, the TiS2 and TiSe2 belong to one-layer trigonal (1T) stack phase. Lattice constants of TiS2 are a = 3.393 Å, c = 5.719 Å and those of TiSe2 are a = 3.502 Å, c = 5.997 Å. The vibration mode Eg and A1g of these crystals were clearly detected by Raman spectroscopy. From the results of X-ray diffraction, the SnX (X=S, Se) material’s crystal structure is orthorhombic. The vibration modes of SnX (X=S, Se) show selection rule of the linearly polarized light along a and along b axis by Raman spectroscopy. The SnX (X=S, Se) show in-plane anisotropy on the c plane. From the Electron Energy Loss Spectroscopy (EELS) and transmittance results of the TiS2 and TiSe2 show the energy gap are around 1 eV and 0.8 eV at room temperature. In the plasma frequency and Hall effect experiments of TiS2 and TiSe2, they have high concentration to 〖10〗^20-〖10〗^21 〖 cm〗^(-3) and they have high electrical conductivity. Owing to the results of Photo V-I and photocatalysis experiments, we can conclude that the materials don’t have any features of photo-response and then photocatalytic behavior. They are metallic materials with electron sea. The metallic behavior of TiS2 crystal was also confirmed by four-point resistivity measurement, where the resistivity increases with temperature increased from 20 to 300K. The four-point resistivity results of TiSe2 show the second order CDW phase transition near ~200K and which possesses the potential for application in the future electronic devices. For thermoelectric measurements, TiS2 and TiSe2 are N-type semiconductors from their negative thermoelectric voltage sign. On the other hand, the SnS and SnSe are P-type semiconductors with positive thermoelectric voltage. The highest figure of merit with ZT~ 0.15 has been achieved in SnSe around 300K and which has high conductivity and low thermal conductivity so that SnSe has the potential applying in thermoelectric devices.
From all the experimental observations, we can infer that the TiS2 and TiSe2 have a narrow energy gap, high conductivity, and high carrier concentration. It provides scientific information for future technological applications. SnX (X=S, Se) have the orientation character and they could be applied to optical device applications. Furthermore, SnSe has better thermoelectric response. It is a suitable candidate for application in thermoelectric devices.

中文摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 晶體成長 2.1 晶體成長方法 2.2 晶體成長設備介紹 2.2.1 高真空系統 2.2.2 長晶反應系統 2.3 長晶程序 2.3.1 元素比例及石英管清洗作業 2.3.2 晶體化合及成長 第三章 實驗原理與量測技術 3.1 X-Ray晶格繞射分析儀 (XRD) 3.2 拉曼散射系統 ( Raman ) 3.3 光穿透光譜 3.4 熱調制反射光譜 (TR) 3.5 四接點電阻率量測 3.6 霍爾效應 ( Hall effect ) 3.7 I-V光電流響應量測 3.8 光催化降解實驗 3.9 熱電量測實驗 第四章 實驗結果與探討 4.1 X-Ray晶格繞射實驗分析 4.2 拉曼散射光譜 4.3 光穿透光譜 4.4 熱調製反射光譜分析 4.5 四點電阻率量測分析 4.6 霍爾效應量測分析 4.7 Photo V-I曲線分析 4.8 光催化降解實驗量測 4.9 熱電量測分析 4.9.1 SnSe熱電特性探討 4.9.2 SnS 熱電特性探討 4.9.3 TiS2 熱電特性探討 4.9.4 TiSe2熱電特性探討 第五章 結論 參考文獻

[1] Wilson, J. A.; Yoffe, A., The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics 1969, 18 (73), 193-335.
[2] Tributsch, H., Layer‐Type Transition Metal Dichalcogenides—a New Class of Electrodes for Electrochemical Solar Cells. Berichte der Bunsengesellschaft für physikalische Chemie 1977, 81 (4), 361-369.
[3] Glebko, N.; Aleksandrova, I.; Tewari, G. C.; Tripathi, T. S.; Karppinen, M.; Karttunen, A. J., Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2: Periodic Trends Studied by Dispersion-Corrected Hybrid Density Functional Methods. The Journal of Physical Chemistry C 2018, 122 (47), 26835-26844.
[4] Muller, G. A.; Cook, J. B.; Kim, H.-S.; Tolbert, S. H.; Dunn, B., High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano letters 2015, 15 (3), 1911-1917.
[5] Goli, P.; Khan, J.; Wickramaratne, D.; Lake, R. K.; Balandin, A. A., Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano letters 2012, 12 (11), 5941-5945.
[6] Morosan, E.; Zandbergen, H. W.; Dennis, B.; Bos, J.; Onose, Y.; Klimczuk, T.; Ramirez, A.; Ong, N. P.; Cava, R. J., Superconductivity in Cu xTiSe2. Nature Physics 2006, 2 (8), 544.
[7] 林文堯, "硫化錫與硒化錫之晶體成長與光學特性研究" 國立臺灣科技大學電子工程系碩士論文, 2017.
[8] Ahn, J.-H.; Lee, M.-J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M.-H., Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano letters 2015, 15 (6), 3703-3708.
[9] Bletskan, D. I.; Bletskan, M. M.; Glukhov, K. E., Electronic structure of tin monosulfide. Journal of Solid State Chemistry 2017, 245, 34-44.
[10] Agarwal, A.; Chaki, S. H.; Lakshminarayana, D., Growth and thermal studies of SnSe single crystals. Materials Letters 2007, 61 (30), 5188-5190.
[11] Ho, C. H.; Li, J. X., Polarized Band‐Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS. Advanced Optical Materials 2017, 5 (3), 1600814.
[12] Michielon de Souza, S.; Ordozgoith da Frota, H.; Trichês, D. M.; Ghosh, A.; Chaudhuri, P.; Silva dos Santos Gusmao, M.; de Figueiredo Pereira, A. F. F.; Couto Siqueira, M.; Daum Machado, K.; Cardoso de Lima, J., Pressure-induced polymorphism in nanostructured SnSe. Journal of Applied Crystallography 2016, 49 (1), 213-221.
[13] Schäfer, H., Chemical transport reactions. Elsevier: 2016.
[14] 何清華, "二硫化鐵之單晶成長與特性研究"國立台灣工業技術學院工程技術研究所碩士論文, 1991.
[15] 陳映岑, "硒化銦之晶體成長及結構特性與光學應用研究"國立台灣科技大學研究所碩士論文, 2014.
[16] 賴相儒, "鉻摻雜二硒化鉬與三硒化二鉻之單晶成長與特性研究"國立臺灣科技大學應用科技研究所碩士論文, 2018.
[17] A. Beiser, "Concepts of Modern Physics," Jordan, Tata McGraw-Hill Education, 2003.
[18] Seraphin, B.; Hess, R.; Bottka, N., Field Effect of the Reflectivity in Germanium. Journal of Applied Physics 1965, 36 (7), 2242-2250.
[19] Pollak, F. H.; Shen, H., Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Materials Science and Engineering: R: Reports 1993, 10 (7), xv-374.
[20] Mathieu, H.; Allegre, J.; Gil, B., Piezomodulation spectroscopy: A powerful investigation tool of heterostructures. Physical Review B 1991, 43 (3), 2218.
[21] Ho, C.-H.; Lee, H.-W.; Cheng, Z.-H., Practical thermoreflectance design for optical characterization of layer semiconductors. Review of scientific instruments 2004, 75 (4), 1098-1102.
[22] Philips’Gloeilampenfabrieken, O., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep 1958, 13 (1), 1-9.
[23] Schroder, D. K., Semiconductor material and device characterization. John Wiley & Sons: 2006.
[24] Goldsmid, H.; Douglas, R., The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics 1954, 5 (11), 386.
[25] Pollock, D. D., Thermoelectricity: theory, thermometry, tool. ASTM International: 1985.
[26] Thompson, A.; Gamble, F.; Symon, C., The verification of the existence of TiS2. Materials Research Bulletin 1975, 10 (9), 915-919.
[27] Chen, P.; Chan, Y.-H.; Fang, X.-Y.; Zhang, Y.; Chou, M.-Y.; Mo, S.-K.; Hussain, Z.; Fedorov, A.-V.; Chiang, T.-C., Charge density wave transition in single-layer titanium diselenide. Nature communications 2015, 6, 8943.
[28] Chaturvedi, A.; Hu, P.; Aravindan, V.; Kloc, C.; Madhavi, S., Unveiling two-dimensional TiS2 as an insertion host for the construction of high energy Li-ion capacitors. Journal of Materials Chemistry A 2017, 5 (19), 9177-9181.
[29] Cui, L.; He, R.; Li, G.; Zhang, Y.; You, Y.; Huang, M., Raman spectroscopy of optical phonon and charge density wave modes in 1T-TiSe2 exfoliated flakes. Solid State Communications 2017, 266, 21-25.
[30] Glebko, N.; Aleksandrova, I.; Tewari, G. C.; Tripathi, T. S.; Karppinen, M.; Karttunen, A. J., Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2: Periodic Trends Studied by Dispersion-Corrected Hybrid Density Functional Methods. The Journal of Physical Chemistry C 2018, 122 (47), 26835-26844.
[31] P.E.Raad, P.L. Komarov, and M. G. Burzo, “Thermo-Reflectance Thermography For Submicron Temperature Measurements,” Electronics Cooling, v. 14, Feb 1, 2008
[32] Wan, C.; Kodama, Y.; Kondo, M.; Sasai, R.; Qian, X.; Gu, X.; Koga, K.; Yabuki, K.; Yang, R.; Koumoto, K., Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano letters 2015, 15 (10), 6302-6308.
[33] Wang, Y.; Pan, L.; Li, C.; Tian, R.; Huang, R.; Hu, X.; Chen, C.; Bao, N.; Koumoto, K.; Lu, C., Doubling the ZT record of TiS2-based thermoelectrics by incorporation of ionized impurity scattering. Journal of Materials Chemistry C 2018, 6 (35), 9345-9353.
[34] Pillo, T.; Hayoz, J.; Berger, H.; Lévy, F.; Schlapbach, L.; Aebi, P., Photoemission of bands above the Fermi level: The excitonic insulator phase transition in 1T−TiSe2. Physical Review B 2000, 61 (23), 16213-16222.
[35] Di Salvo, F.; Waszczak, J., Transport properties and the phase transition in Ti1− xMxSe2 (M= Ta or V). Physical Review B 1978, 17 (10), 3801.
[36] Daou, R.; Takahashi, H.; Hébert, S.; Beaumale, M.; Guilmeau, E.; Maignan, A., Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS2 single crystals. Journal of Applied Physics 2015, 117 (16), 165101.
[37] Levy, F., Electrical resistivity and Hall effect in TiSe2containing vanadium impurities. Journal of Physics C: Solid State Physics 1979, 12 (18), 3725-3732.
[38] Xiang, L.; Zhao, X.; Yin, J.; Fan, B., Well-organized 3D urchin-like hierarchical TiO2 microspheres with high photocatalytic activity. Journal of Materials Science 2012, 47 (3), 1436-1445.
[39] Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508 (7496), 373.
[40] Lakhani, A. A.; Jandl, S.; Ayache, C.; Jay-Gerin, J.-P., Thermoelectric power of TiSe2−xSx mixed crystals at low temperatures. Physical Review B 1983, 28 (4), 1978.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 2024/07/26 (校外網路)
全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE