簡易檢索 / 詳目顯示

研究生: Ahmad bin Arshad
Ahmad bin Arshad
論文名稱: 規律性晶格結構中圓角與交叉橫桿的變化對積層製造機械性質之影響
Effect of Fillets and Crossbars on Mechanical Performance of Additively Manufactured Periodic Lattice Structures
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: Aamer Nazir
Aamer Nazir
林柏廷
Po Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 133
中文關鍵詞: 晶格結構積層製造機械性質剛性能量吸收效率單晶細胞圓角交叉橫樑
外文關鍵詞: Lattice Structures, Additive Manufacturing, Mechanical Properties, Stiffness, Energy Absorption Efficiency, Unit cells, Fillets, Crossbars
相關次數: 點閱:230下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶格結構的機械性質受原材料的性質、相對密度和單晶細胞拓撲影響。相對密度在確定機械性質中起著最大的作用,但是通過調整單晶細胞的拓撲結構,可以提高機械性質。可以設計週期性晶格結構來滿足多種約束條件,例如優化剛性和吸收能量,同時通過改變局部拓撲結構和去除應力集中源的銳角來保持相對密度。可以使用積層製造(AM)製程製造具有定制的拓撲蜂槽結構,以獲得所需的整體和局部機械性質,例如剛性和能量吸收。在這項研究中,通過在結構中添加圓角和橫桿,同時保持相對密度不變,重新設計了Kelvin和Octet Truss晶格結構。進行了模擬和實驗,以研究圓角對以恆定相對密度設計的開放式晶格結構的剛性、能量吸收、能量返回和能量損失的影響。 HP Multi-Jet Fusion 4200用於列印試片以進行實驗驗證。結果表示通過增加圓角和/或垂直支柱,可以明顯的提高晶格結構的剛性和能量吸收效率,這也會影響破壞機理和順從性。通過增加平行於負載方向的橫樑直徑和增加垂直橫梁支撐,可防止或延遲挫曲。以及增加圓角半徑,從而增加邊緣的品質,可以進一步增加機械性質。在邊緣質量。此外,由於增加了這些元素,晶格結構的後降伏行為和失效機制也發生了變化,增加圓角可穩定結構,將應力應變曲線向晶格結構的理想彈性塑膠壓縮曲線移動,而交叉橫樑的增加將應力應變曲線向典型的彈性-脆性壓縮曲線移動


    The mechanical properties of lattice structure are affected by the properties of the parent material, the relative density, and the topology of the unit cell. The relative density plays the largest role in determining the mechanical properties but by tailoring the topology of the unit cell, the mechanical properties can be enhanced. Periodic lattice structures can be designed for multiple constraints such as optimization of stiffness and energy absorption while keeping the relative density constant by changing the local topology and removing sharp edges which are a source of stress concentrations. Cellular structures with tailored topologies can be fabricated using additive manufacturing (AM) processes to obtain the desired global and local mechanical properties, such as stiffness and energy absorption. In this study, Kelvin and Octet Truss lattice structures were redesigned by adding fillets and crossbars to these structures while keeping the relative density constant. Simulation and experimental studies were conducted to investigate the effect of fillets on stiffness, energy absorption, energy return, and energy loss of open-cell lattice structures which were designed at constant relative density. HP Multi-Jet Fusion 4200 was used to fabricate the samples for experimental verification. The results have shown that the stiffness and energy absorption efficiency of lattice structures can be improved significantly by the addition of fillets and/or vertical struts which also effect the failure mechanism and compliance. Further increase in the mechanical properties can be achieved by increasing the diameter of the beams parallel to the loading direction, by supporting these beams by adding perpendicular beams which can prevent or delay the onset of buckling, and by increasing the radius of fillets thus increasing the mass at the edges. Furthermore, the post yield behavior and failure mechanism of lattice structures was also changed due to the addition of these elements. Addition of fillets stabilizes the structure and shifts the stress-strain curve towards the ideal elastic-plastic compression curve of lattice structures while the addition of crossbars shifts the stress-strain curve towards the typical elastic-brittle compression curve.

    TABLE OF CONTENTS TITLE PAGE………………………………………………………………...……………….……….… I MASTER’S THESIS RECOMMENDATION FORM………………………………………… II QUALIFICATION FORM BY MASTER’S DEGREE EXAMINATION COMMITTEE………………………………………………………………………………….………III ACKNOWLEDGMENTS IV ABSTRACT (CHINESE) 摘要 V ABSTRACT (ENGLISH) VI TABLE OF CONTENTS VII LIST OF FIGURES XI LIST OF TABLES XVI CHAPTER 1 INTRODUCTION 1 1.1 Introduction to Lattice Structures 1 1.2 Problem Statement 3 1.3 Objectives 4 1.4 Thesis Organization 5 CHAPTER 2 LITERATURE REVIEW 6 2.1 Lattice Structures 6 2.1.1 Types 6 2.1.2 Mechanical Properties 9 2.1.2.1 Topology 9 2.1.2.2 Stacking Method 10 2.1.3 Manufacturing 10 2.1.3.1 Honeycombs 11 2.1.3.2 Stochastic Foams 11 2.1.3.3 Limitations of Traditional Manufacturing Processes 11 2.2 Additive Manufacturing 12 2.2.1 Steps in Additive Manufacturing 12 2.2.2 Advantage of AM for Manufacturing of Lattice Structures 14 2.2.3 Additive Manufacturing Processes 15 2.2.3.1 Binder Jetting 16 2.2.3.2 Direct Energy Deposition 17 2.2.3.3 Material Extrusion 18 2.2.3.4 Material Jetting 19 2.2.3.5 Powder Bed Fusion 20 2.2.3.6 Sheet Lamination 21 2.2.3.7 Vat Photo-polymerization 21 2.3 Additive Manufacturing of Lattice Structures 22 2.4 Existing Literature on Modified Lattice Structures 24 2.5 Summary of Literature Review 30 CHAPTER 3 DESIGN AND MANUFACTURING 32 3.1 Design of Lattice Structures 32 3.1.1 Design of the Unit Cells 33 3.1.1.1 Kelvin Unit Cells 34 3.1.1.2 Octet Truss Unit Cells 38 3.1.2 Design of Lattice Structures 41 3.1.2.1 Kelvin Lattice Structures 41 3.1.2.2 Octet Truss Lattice Structures 44 3.2 Fabrication of Experimental Samples 46 3.2.1 HP MJF 4200 47 3.2.2 Placement of Parts in the Powder Bed 50 3.2.2.1 Anisotropy due to location 52 3.2.3 Post Processing 53 3.2.4 Manufactured Samples 55 CHAPTER 4 MATERIALS AND METHODS 58 4.1 Material 58 4.1.1 Stock Material 58 4.1.1.1 Feed Powder 59 4.1.1.2 Thermocatalyst 60 4.1.2 Properties of Printed Material 60 4.1.2.1 Material Composition 60 4.1.2.2 Surface Roughness 61 4.1.2.3 Tensile Strength 61 4.2 Finite Element Analysis 63 4.2.1 FEA Solver 63 4.2.1.1 Material Properties 64 4.2.1.2 Geometry 64 4.2.1.3 Material Assignment 65 4.2.1.4 Contact Definition 65 4.2.1.5 Mesh Generation 67 4.2.1.6 Boundary Conditions 69 4.2.1.7 FEA Results Calculation 71 4.3 Experimental Methods 72 4.3.1 Weight and Volume Measurements 72 4.3.2 Uniaxial Compression Testing 72 4.3.3 Loading-Unloading Testing 74 4.4 Result Calculation 75 4.4.1 Stress Calculation 75 4.4.2 Strain Calculation 76 4.4.3 Stiffness 76 4.4.4 Energy Absorption Efficiency 77 CHAPTER 5 RESULTS AND DISCUSSIONS 80 5.1 Effect of Fillets and Crossbars on Single Unit Cells 80 5.1.1 Effect of Fillets 80 5.1.1.1 Stiffness 80 5.1.1.2 Energy Absorption and Energy Return 86 5.1.2 Effect of Crossbars 92 5.1.2.1 Stiffness 92 5.1.2.2 Energy Absorption and Energy Return 94 5.2 Effect of Fillets and Crossbars on Lattice Structures 95 5.2.1 Kelvin Lattice Structures 95 5.2.2 Octet Truss Lattice Structures 102 CHAPTER 6 CONCLUSIONS 107 REFERENCES 109

    [1] V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: Bending versus stretching dominated architectures,” Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001, doi: 10.1016/S1359-6454(00)00379-7.
    [2] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2d ed, Second. Cambridge: Cambridge University Press, 1997.
    [3] D. Mahmoud and M. Elbestawi, “Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review,” J. Manuf. Mater. Process., vol. 1, no. 2, p. 13, Oct. 2017, doi: 10.3390/jmmp1020013.
    [4] A. Nazir, K. M. Abate, A. Kumar, and J. Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” Int. J. Adv. Manuf. Technol., vol. 104, no. 9–12, pp. 3489–3510, 2019, doi: 10.1007/s00170-019-04085-3.
    [5] M. F. Ashby, “The properties of foams and lattices,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, 2006, doi: 10.1098/rsta.2005.1678.
    [6] M. P. Wolcott, “Cellular solids: Structure and properties,” Mater. Sci. Eng. A, vol. 123, no. 2, pp. 282–283, 1990, doi: 10.1016/0921-5093(90)90295-e.
    [7] H. N. G. Wadley, “Cellular metals manufacturing,” Adv. Eng. Mater., vol. 4, no. 10, pp. 726–733, 2002, doi: 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y.
    [8] “Metal Foams: A Design Guide - Michael Ashby, Tony Evans, NA Fleck, J.W. Hutchinson, H.N.G. Wadley, L. J. Gibson - Google Books.” https://books.google.com.tw/books?hl=en&lr=&id=C0daIBo6LjgC&oi=fnd&pg=PP1&ots=RzkStOUPLg&sig=eucXEsLTqLiCniWSQcI-n0Af62Q&redir_esc=y#v=onepage&q&f=false (accessed Aug. 19, 2020).
    [9] H. N. G. Wadley, N. A. Fleck, and A. G. Evans, “Fabrication and structural performance of periodic cellular metal sandwich structures,” Compos. Sci. Technol., vol. 63, no. 16, pp. 2331–2343, Dec. 2003, doi: 10.1016/S0266-3538(03)00266-5.
    [10] A. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng., vol. 37, no. 9, pp. 947–959, 2010, doi: 10.1016/j.ijimpeng.2010.03.007.
    [11] K. J. Kang, “Wire-woven cellular metals: The present and future,” Progress in Materials Science, vol. 69. Elsevier Ltd, pp. 213–307, Apr. 01, 2015, doi: 10.1016/j.pmatsci.2014.11.003.
    [12] I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. Springer US, 2010.
    [13] ASTM International, “F2792-12a - Standard Terminology for Additive Manufacturing Technologies,” Rapid Manuf. Assoc., pp. 10–12, 2013, doi: 10.1520/F2792-12A.2.
    [14] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, and P. Fino, “Overview on additive manufacturing technologies,” Proc. IEEE, vol. 105, no. 4, 2017, doi: 10.1109/JPROC.2016.2625098.
    [15] A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Osman, “Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering,” PLoS One, vol. 9, no. 9, 2014, doi: 10.1371/journal.pone.0108252.
    [16] H. F. Nied, C. A. Taylor, and H. G. Delorenzi, “Three‐dimensional finite element simulation of thermoforming,” Polym. Eng. Sci., vol. 30, no. 20, 1990, doi: 10.1002/pen.760302009.
    [17] G. N. Nielson, M. Okandan, R. P. J., J. L. Cruz-Campa, P. Clews, M. Wanlass, W. C. Sweatt, E. Steenbergen, and V. P. Gupta, “Microscale PV cells for concentrated PV applications,” in 24th European Photovoltaic Solar Energy Conference, 2009, pp. 170–173, [Online]. Available: https://www.eupvsec-proceedings.com/proceedings?paper=5305.
    [18] D. F. Heaney, Handbook of Metal Injection Molding. 2012.
    [19] T. Do, P. Kwon, and C. S. Shin, “Process development toward full-density stainless steel parts with binder jetting printing,” Int. J. Mach. Tools Manuf., vol. 121, 2017, doi: 10.1016/j.ijmachtools.2017.04.006.
    [20] M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Additive Manufacturing, vol. 28. 2019, doi: 10.1016/j.addma.2019.05.031.
    [21] A. Dass and A. Moridi, “State of the art in directed energy deposition: From additive manufacturing to materials design,” Coatings, vol. 9, no. 7. 2019, doi: 10.3390/COATINGS9070418.
    [22] K. Ramani, D. Ramanujan, W. Z. Bernstein, F. Zhao, J. Sutherland, C. Handwerker, J. K. Choi, H. Kim, and D. Thurston, “Integrated sustainable life cycle design: A Review,” J. Mech. Des. Trans. ASME, vol. 132, no. 9, pp. 0910041–09100415, 2010, doi: 10.1115/1.4002308.
    [23] “The Complete Guide to Directed Energy Deposition (DED) in 3D Printing - 3Dnatives.” https://www.3dnatives.com/en/directed-energy-deposition-ded-3d-printing-guide-100920194/ (accessed Aug. 11, 2020).
    [24] F. Wulle, D. Coupek, F. Schäffner, A. Verl, F. Oberhofer, and T. Maier, “Workpiece and Machine Design in Additive Manufacturing for Multi-Axis Fused Deposition Modeling,” in Procedia CIRP, 2017, vol. 60, doi: 10.1016/j.procir.2017.01.046.
    [25] A. Kampker, J. Triebs, S. Kawollek, P. Ayvaz, and S. Hohenstein, “Review on machine designs of material extrusion based additive manufacturing (AM) systems - Status-Quo and potential analysis for future AM systems,” in Procedia CIRP, 2019, vol. 81, doi: 10.1016/j.procir.2019.03.205.
    [26] E. Jabari, F. Liravi, E. Davoodi, L. Lin, and E. Toyserkani, “High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity,” Addit. Manuf., vol. 35, 2020, doi: 10.1016/j.addma.2020.101330.
    [27] A. Pugalendhi, R. Ranganathan, and S. Ganesan, “Impact of process parameters on mechanical behaviour in multi-material jetting,” Mater. Today Proc., 2020, doi: 10.1016/j.matpr.2019.12.106.
    [28] N. Reis, K. A. M. Seerden, B. Derby, J. W. Halloren, and J. R. G. Evans, “Direct inkjet deposition of ceramic green bodies: II - Jet behaviour and deposit formation,” Mater. Res. Soc. Symp. - Proc., vol. 542, 1999, doi: 10.1557/proc-542-147.
    [29] “What Is Material Jetting? – 3D Printing Simply Explained | All3DP.” https://all3dp.com/2/what-is-material-jetting-3d-printing-simply-explained/ (accessed Aug. 11, 2020).
    [30] Y. Zhang, W. Jarosinski, Y. G. Jung, and J. Zhang, “Additive manufacturing processes and equipment,” in Additive Manufacturing: Materials, Processes, Quantifications and Applications, Elsevier, 2018, pp. 39–51.
    [31] T. Obikawa, M. Yoshino, and J. Shinozuka, “Sheet steel lamination for rapid manufacturing,” J. Mater. Process. Technol., vol. 89–90, pp. 171–176, May 1999, doi: 10.1016/S0924-0136(99)00027-8.
    [32] “3D Printers, Software, Manufacturing & Digital Healthcare | 3D Systems.” https://www.3dsystems.com/ (accessed Aug. 11, 2020).
    [33] P. T. Lan, S. Y. Chou, L. L. Chen, and D. Gemmill, “Determining fabrication orientations for rapid prototyping with stereolithography apparatus,” CAD Comput. Aided Des., vol. 29, no. 1, pp. 53–62, Jan. 1997, doi: 10.1016/S0010-4485(96)00049-8.
    [34] A. Nazir, K. M. Abate, A. Kumar, and J. Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” Int. J. Adv. Manuf. Technol., vol. 104, no. 9–12, pp. 3489–3510, Oct. 2019, doi: 10.1007/s00170-019-04085-3.
    [35] M. Helou, S. Vongbunyong, and S. Kara, “Finite Element Analysis and Validation of Cellular Structures,” in Procedia CIRP, Jan. 2016, vol. 50, pp. 94–99, doi: 10.1016/j.procir.2016.05.018.
    [36] R. Gümrük and R. A. W. Mines, “Compressive behaviour of stainless steel micro-lattice structures,” Int. J. Mech. Sci., vol. 68, pp. 125–139, 2013, doi: 10.1016/j.ijmecsci.2013.01.006.
    [37] F. N. Habib, P. Iovenitti, S. H. Masood, and M. Nikzad, “Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology,” Mater. Des., vol. 155, pp. 86–98, Oct. 2018, doi: 10.1016/j.matdes.2018.05.059.
    [38] A. Nazir, A. Bin Arshad, and J. Y. Jeng, “Buckling and post-buckling behavior of uniform and variable-density lattice columns fabricated using additive manufacturing,” Materials (Basel)., vol. 12, no. 21, 2019, doi: 10.3390/ma12213539.
    [39] L. Dong, V. Deshpande, and H. Wadley, “Mechanical response of Ti-6Al-4V octet-truss lattice structures,” Int. J. Solids Struct., 2015, doi: 10.1016/j.ijsolstr.2015.02.020.
    [40] C. Ling, A. Cernicchi, M. D. Gilchrist, and P. Cardiff, “Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading,” Mater. Des., vol. 162, pp. 106–118, 2019, doi: 10.1016/j.matdes.2018.11.035.
    [41] W. Y. Jang, S. Kyriakides, and A. M. Kraynik, “On the compressive strength of open-cell metal foams with Kelvin and random cell structures,” Int. J. Solids Struct., vol. 47, no. 21, pp. 2872–2883, 2010, doi: 10.1016/j.ijsolstr.2010.06.014.
    [42] L. Gong, S. Kyriakides, and W. Y. Jang, “Compressive response of open-cell foams. Part I: Morphology and elastic properties,” Int. J. Solids Struct., vol. 42, no. 5–6, pp. 1355–1379, 2005, doi: 10.1016/j.ijsolstr.2004.07.023.
    [43] R. B. Fuller, “Synergetic building construction,” US2986241A, 1961.
    [44] W. Thomson, “On the division of space with minimum partitional area,” Acta Math., vol. 11, no. 1–4, pp. 121–134, Mar. 1887, doi: 10.1007/bf02418046.
    [45] D. Weaire, “Kelvin’s foam structure: A commentary,” Philos. Mag. Lett., vol. 88, no. 2, pp. 91–102, 2008, doi: 10.1080/09500830701697498.
    [46] J. E. Taylor, “The Structure of Singularities in Soap-Bubble-Like and Soap-Film-Like Minimal Surfaces,” Ann. Math., 1976, doi: 10.2307/1970949.
    [47] F. Morgan, “Mathematicians, Including Undergraduates, Look at Soap Bubbles,” Am. Math. Mon., 1994, doi: 10.2307/2975627.
    [48] V. S. Deshpande, N. A. Fleck, and M. F. Ashby, “Effective properties of the octet-truss lattice material,” J. Mech. Phys. Solids, vol. 49, no. 8, pp. 1747–1769, 2001, doi: 10.1016/S0022-5096(01)00010-2.
    [49] R. G. Rinaldi, J. Bernal-Ostos, C. I. Hammetter, A. J. Jacobsen, and F. W. Zok, “Effects of material heterogeneities on the compressive response of thiol-ene pyramidal lattices,” J. Mater. Sci., vol. 47, no. 18, pp. 6621–6632, 2012, doi: 10.1007/s10853-012-6598-5.
    [50] C. I. Hammetter, R. G. Rinaldi, and F. W. Zok, “Pyramidal lattice structures for high strength and energy absorption,” J. Appl. Mech. Trans. ASME, vol. 80, no. 4, 2013, doi: 10.1115/1.4007865.
    [51] R. M. Latture, R. X. Rodriguez, L. R. Holmes, and F. W. Zok, “Effects of nodal fillets and external boundaries on compressive response of an octet truss,” Acta Mater., vol. 149, pp. 78–87, May 2018, doi: 10.1016/j.actamat.2017.12.060.
    [52] N. Wicks and J. W. Hutchinson, “Optimal truss plates,” Int. J. Solids Struct., vol. 38, no. 30–31, pp. 5165–5183, 2001, doi: 10.1016/S0020-7683(00)00315-2.
    [53] H. N. G. Wadley, K. P. Dharmasena, M. Y. He, R. M. McMeeking, A. G. Evans, T. Bui-Thanh, and R. Radovitzky, “An active concept for limiting injuries caused by air blasts,” Int. J. Impact Eng., vol. 37, no. 3, pp. 317–323, 2010, doi: 10.1016/j.ijimpeng.2009.06.006.
    [54] A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. F. Ashby, and H. N. G. Wadley, “The topological design of multifunctional cellular metals,” Progress in Materials Science, vol. 46, no. 3–4. pp. 309–327, 2001, doi: 10.1016/S0079-6425(00)00016-5.
    [55] T. Tancogne-Dejean, A. B. Spierings, and D. Mohr, “Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading,” Acta Mater., vol. 116, pp. 14–28, Sep. 2016, doi: 10.1016/j.actamat.2016.05.054.
    [56] M. Mohsenizadeh, F. Gasbarri, M. Munther, A. Beheshti, and K. Davami, “Additively-manufactured lightweight Metamaterials for energy absorption,” Mater. Des., vol. 139, pp. 521–530, 2018, doi: 10.1016/j.matdes.2017.11.037.
    [57] J. Song, W. Zhou, Y. Wang, R. Fan, Y. Wang, J. Chen, Y. Lu, and L. Li, “Octet-truss cellular materials for improved mechanical properties and specific energy absorption,” Mater. Des., vol. 173, 2019, doi: 10.1016/j.matdes.2019.107773.
    [58] D. Qi, H. Yu, M. Liu, H. Huang, S. Xu, Y. Xia, G. Qian, and W. Wu, “Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams,” Int. J. Mech. Sci., vol. 163, 2019, doi: 10.1016/j.ijmecsci.2019.105091.
    [59] A. Zargarian, M. Esfahanian, J. Kadkhodapour, and S. Ziaei-Rad, “Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods,” J. Mech. Behav. Biomed. Mater., vol. 37, pp. 264–273, 2014, doi: 10.1016/j.jmbbm.2014.05.018.
    [60] Y. Duan, B. Du, X. Shi, B. Hou, and Y. Li, “Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells,” Int. J. Impact Eng., vol. 132, p. 103303, Oct. 2019, doi: 10.1016/j.ijimpeng.2019.05.017.
    [61] A. Nazir and J. Y. Jeng, “A high-speed additive manufacturing approach for achieving high printing speed and accuracy,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2019, doi: 10.1177/0954406219861664.
    [62] L. P. HP Development Company, “HP Multi Jet Fusion Technology: A Disruptive 3D Printing Technology for a New Era of Manufacturing,” HP Tech. White Pap., 2014.
    [63] Y. Jiang and Q. Wang, “Highly-stretchable 3D-architected Mechanical Metamaterials,” Sci. Rep., vol. 6, Sep. 2016, doi: 10.1038/srep34147.
    [64] J. Mueller, K. H. Matlack, K. Shea, and C. Daraio, “Energy Absorption Properties of Periodic and Stochastic 3D Lattice Materials,” Adv. Theory Simulations, vol. 2, no. 10, p. 1900081, Oct. 2019, doi: 10.1002/adts.201900081.
    [65] O. Weeger, N. Boddeti, S. K. Yeung, S. Kaijima, and M. L. Dunn, “Digital design and nonlinear simulation for additive manufacturing of soft lattice structures,” Addit. Manuf., 2019, doi: 10.1016/j.addma.2018.11.003.
    [66] Y. Chen, F. Qian, L. Zuo, F. Scarpa, and L. Wang, “Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments,” Extrem. Mech. Lett., vol. 17, pp. 24–32, Nov. 2017, doi: 10.1016/j.eml.2017.09.012.
    [67] A. Clausen, F. Wang, J. S. Jensen, O. Sigmund, and J. A. Lewis, “Topology Optimized Architectures with Programmable Poisson’s Ratio over Large Deformations,” Adv. Mater., vol. 27, no. 37, pp. 5523–5527, Oct. 2015, doi: 10.1002/adma.201502485.
    [68] A. Alomarah, S. H. Masood, I. Sbarski, B. Faisal, Z. Gao, and D. Ruan, “Compressive properties of 3D printed auxetic structures: experimental and numerical studies,” Virtual Phys. Prototyp., vol. 15, no. 1, pp. 1–21, Jan. 2020, doi: 10.1080/17452759.2019.1644184.
    [69] J. Mueller, J. R. Raney, D. M. Kochmann, and K. Shea, “Stiffness-Independent Toughening of Beams through Coaxial Interfaces,” Adv. Sci., 2018, doi: 10.1002/advs.201800728.
    [70] S. Yuan, C. K. Chua, and K. Zhou, “3D-Printed Mechanical Metamaterials with High Energy Absorption,” Adv. Mater. Technol., 2019, doi: 10.1002/admt.201800419.
    [71] H. Fan, Y. Luo, F. Yang, and W. Li, “Approaching perfect energy absorption through structural hierarchy,” Int. J. Eng. Sci., vol. 130, pp. 12–32, Sep. 2018, doi: 10.1016/j.ijengsci.2018.05.005.
    [72] D. S. J. Al-Saedi, S. H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, “Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM,” Mater. Des., vol. 144, pp. 32–44, Apr. 2018, doi: 10.1016/j.matdes.2018.01.059.
    [73] Z. Ozdemir, A. Tyas, R. Goodall, and H. Askes, “Energy absorption in lattice structures in dynamics: Nonlinear FE simulations,” Int. J. Impact Eng., vol. 102, pp. 1–15, Apr. 2017, doi: 10.1016/j.ijimpeng.2016.11.016.
    [74] Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J. A. Warren, S. D. Fay, R. Goodall, I. Todd, and H. Askes, “Energy absorption in lattice structures in dynamics: Experiments,” Int. J. Impact Eng., vol. 89, pp. 49–61, Mar. 2016, doi: 10.1016/J.IJIMPENG.2015.10.007.
    [75] J. Shen, G. Lu, and D. Ruan, “Compressive behaviour of closed-cell aluminium foams at high strain rates,” Compos. Part B Eng., vol. 41, no. 8, pp. 678–685, Dec. 2010, doi: 10.1016/j.compositesb.2010.07.005.
    [76] I. Ullah, M. Brandt, and S. Feih, “Failure and energy absorption characteristics of advanced 3D truss core structures,” Mater. Des., vol. 92, pp. 937–948, Feb. 2016, doi: 10.1016/J.MATDES.2015.12.058.
    [77] E. Linul, D. A. Şerban, T. Voiconi, L. Marşavina, and T. Sadowski, “Energy - Absorption and efficiency diagrams of rigid PUR foams,” in Key Engineering Materials, 2014, vol. 601, pp. 246–249, doi: 10.4028/www.scientific.net/KEM.601.246.
    [78] M. Kaur, T. G. Yun, S. M. Han, E. L. Thomas, and W. S. Kim, “3D printed stretching-dominated micro-trusses,” Mater. Des., vol. 134, pp. 272–280, Nov. 2017, doi: 10.1016/j.matdes.2017.08.061.
    [79] A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, “Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures,” Int. J. Solids Struct., vol. 48, no. 3–4, pp. 506–516, Feb. 2011, doi: 10.1016/j.ijsolstr.2010.10.018.
    [80] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, and C. M. Spadaccini, “Ultralight, ultrastiff mechanical metamaterials,” Science (80-. )., vol. 344, no. 6190, pp. 1373–1377, 2014, doi: 10.1126/science.1252291.
    [81] F. N. Habib, P. Iovenitti, S. H. Masood, and M. Nikzad, “In-plane energy absorption evaluation of 3D printed polymeric honeycombs,” Virtual Phys. Prototyp., vol. 12, no. 2, pp. 117–131, Apr. 2017, doi: 10.1080/17452759.2017.1291354.
    [82] “Creo 7.0: The Future of How You Design | PTC.” https://www.ptc.com/en/products/creo (accessed Aug. 26, 2020).
    [83] A. Nazir and J.-Y. Jeng, “A high-speed additive manufacturing approach for achieving high printing speed and accuracy,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 234, no. 14, pp. 2741–2749, Jul. 2020, doi: 10.1177/0954406219861664.
    [84] “Engineering Simulation & 3D Design Software | Ansys.” https://www.ansys.com/ (accessed Sep. 16, 2020).
    [85] Q. M. Li, I. Magkiriadis, and J. J. Harrigan, “Compressive strain at the onset of densification of cellular solids,” J. Cell. Plast., vol. 42, no. 5, pp. 371–392, Sep. 2006, doi: 10.1177/0021955X06063519.
    [86] M. Avalle, G. Belingardi, and R. Montanini, “Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram,” Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001, doi: 10.1016/S0734-743X(00)00060-9.

    QR CODE