簡易檢索 / 詳目顯示

研究生: 黃立遠
Li-Yuan Huang
論文名稱: 飛灰基無機聚合物工程性質及應用之研究
Study on Mechanical Properties and Applications of Fly Ash-Based Geopolymer
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 楊仲家
Chung-Chia Yang
黃忠信
Jong-Shin Huang
黃然
Ran Huang
黃兆龍
Zhao-Long Huang
陳君弢
Chun-Tao Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 148
中文關鍵詞: 田口實驗設計法鹼性溶液飛灰無機聚合物養護溫度補強混凝土韌性指數固化重金屬毒性溶出試驗微觀結構
外文關鍵詞: Taguchi experimental design method, alkaline solution, fly ash, geopolymer, curing temperature, retrofit, concrete, toughness index, immobilization, heavy metal, TCLP, microstructure
相關次數: 點閱:364下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以氫氧化鈉溶液及矽酸鈉溶液(水玻璃)合成之鹼性溶液激發飛灰(主要矽鋁材料)配製成之無機聚合物的性質與應用。文中以田口實驗設計法探討不同鹼性溶液組成對於無機聚合物工程性質之影響,另透過高溫養護探討養護溫度與養護時間對於無機聚合物性質之影響;於無機聚合物應用方面,分別探討無機聚合物對於劣化混凝土構造補強之可行性及固化重金屬之潛能,以做為環保減廢綠色材料之開發依據。
    研究結果顯示:(1)依據實驗設計法中變異數分析結果顯示,矽酸鈉溶液用量對於無機聚合物之抗壓強度與動彈性模數屬非常顯著因子,對於各齡期飛灰基無機聚合物抗壓強度及動彈性模數的貢獻率分別為80.63~89.52%及62.26~72.71%。相較之下,氫氧化鈉溶液用量之影響性較小。(2)矽酸鈉溶液用量須適宜,過量的添加會提高H2O/Na2O,而導致無機聚合物之抗壓強度與動彈性模數下降。(3)養護溫度之增加,將有效提升無機聚合物之各項性質,其中90℃養護效果優於60℃養護,另外,養護時間越長越能提升無機聚合物性質,但以12小時養護時間最具經濟性。(4)經無機聚合物纖維砂漿補強後之圓柱混凝土,在加載受力過程中,因有鋼纖維可抑制裂縫成長速度,可提供較長的預警反應時間。(5)添加重金屬離子對於無機聚合物抗壓強度之影響非常複雜,以長期(56天)而言,對於無機聚合物抗壓強度有不利之影響,但重金屬離子固化效果隨齡期增加,且皆符合環保署規定之毒物溶出標準。


    This study investigates the properties and applications of geopolymer made of the fly ash as the major source material of silica-alumina activated by the alkali solution of sodium hydroxide solution and sodium silicate solution (water glass). The experimental design method was used to evaluate the effects of various alkali solutions on the engineering properties of geopolymer. In addition, through curing at elevated temperature, the influences of curing temperature and duration on the properties of geopolymer were also studied. In terms of application, the feasibility of retrofitting deteriorated concrete structure and potential for the immobilization of toxic heavy metal ions using geopolymer, respectively, were also explored and served as the base for developing the green materials for the reduction of waste and environmental protection. The experiment results show that: (1) The ANOVA results from the Taguchi experimental design method indicate that the dosage of sodium silicate solution is the most significant factor to control the compressive strength and dynamic elastic modulus of geopolymer. The individual contributions on the compressive strengths and dynamic moduli of elasticity of fly ash-based geopolymer at various ages are 80.63 to 89.52% and 62.26 to 72.71%, respectively. In comparison, the influence of dosage of sodium hydroxide solution is minor. (2) An adequate dosage of sodium silicate solution must be always kept, otherwise, the excessive additions of sodium silicate solution will increase the ratio H2O/Na2O such that the reduction of compressive strength and dynamic elastic modulus of geopolymer will occur. (3) The increase of curing temperature effectively improves various properties of geopolymer where the effect of 90 oC is better than that of 60 oC. In addition, the longer the curing time, the better the enhancement of geopolymer properties. However, the curing time of 12 hours is the most cost-effective. (4) The cylindrical concrete specimen retrofitted by the geopolymer mortar with steel fiber will defer the propagating speed of cracking during loading test to provide a longer pre-warning time. (5) The effects of heavy metal ions on the compressive strength of geopolymer were very complex. A negative effect on the compressive strength at age of 56 days was found. But the efficiency immobilization of heavy metal ions increases with age and complied with the provisions of the EPA standards for toxic dissolution.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究項目與步驟 1 1.3 論文內容 2 第二章 文獻回顧 5 2.1 前言 5 2.2 飛灰基無機聚合物組成條件 7 2.2.1 飛灰 7 2.2.1.1 飛灰目前使用情形 7 2.2.1.2 飛灰之分類 8 2.2.1.3 飛灰之化學成分 8 2.2.1.4 飛灰之物理性質 9 2.2.1.5 飛灰之國內規範要求 10 2.2.2 鹼性溶液 10 2.2.2.1 矽酸鈉 10 2.2.2.2 矽酸鈉之特性 10 2.2.2.3 矽酸鈉之應用 11 2.2.2.4 矽酸鈉溶液之凝結固化 11 2.2.3 氫氧化鈉 12 2.2.3.1 氫氧化鈉之特性 12 2.2.3.2 氫氧化鈉之應用 13 2.3 無機聚合物 13 2.3.1 無機聚合物之特性 14 2.3.2 無機聚合物之反應機理 16 2.3.3 無機聚合物之影響因素 19 2.3.3.1 矽鋁材料之影響 19 2.2.3.2 鹼性溶液種類之影響 20 2.3.4 無機聚合物之結構分析 21 2.3.4.1 以29Si核磁共振試驗分析 21 2.3.4.2 以27Al核磁共振試驗分析 21 2.3.5 無機聚合物之應用 22 第三章 試驗原理與設備 34 3.1 試驗原理 34 3.1.1 抗壓試驗 34 3.1.2 超音波試驗 34 3.1.3 熱傳導試驗 35 3.1.4 共振頻率試驗 36 3.1.5 毒性特性溶出程序(Toxicity Characteristic Leaching Procedure, TCLP)試驗 36 3.1.6 X光繞射(X-ray Diffraction, XRD)試驗 38 3.1.7 掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM)試驗 38 3.1.8 能量散射光譜儀(Energy Dispersive Spectrometer, EDS)試驗 39 3.1.9 傅立葉式紅外線吸收光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)試驗 39 3.1.10 核磁共振(Nuclear Magnetic Resonance, NMR)試驗 40 3.2 試驗設備 41 3.2.1 抗壓試驗設備 41 3.2.2 超音波速量測儀 41 3.2.3 熱傳導測定儀 41 3.2.4 共振頻率測定儀 41 3.2.5 毒性特性溶出程序試驗設備 42 3.2.6 X光繞射試驗設備 42 3.2.7 掃瞄式電子顯微鏡試驗設備 42 3.2.8 能量散射光譜儀試驗設備 42 3.2.9 傅立葉式紅外線吸收光譜儀試驗設備 42 3.2.10 核磁共振儀試驗設備 42 第四章 鹼性溶液組成及養護溫度對於無機聚合物性質之研究 52 4.1 前言 52 4.2 實驗設計法 53 4.3 試驗計畫 55 4.3.1 試驗材料與變數 55 4.3.2 試驗項目與步驟 55 4.4 結果與討論 56 4.4.1 無機聚合物工程性質 56 4.4.1.1 抗壓強度 56 4.4.1.2 動彈性模數 57 4.4.2 養護溫度與養護時間對於無機聚合物性質之影響 58 4.4.2.1 抗壓強度 58 4.4.2.2 單位重 59 4.4.2.3 超音波速 59 4.4.2.4 熱傳導係數 59 4.4.2.5 動彈性模數及動剪性模數 60 4.3.2.6 SEM與EDS分析 60 4.4 本章小結 61 第五章 飛灰基無機聚合物應用於混凝土構造補強之研究 86 5.1 前言 86 5.2 試驗計畫 87 5.2.1 試驗材料與變數 87 5.2.1.1 試驗材料 87 5.2.1.2 試驗變數 88 5.2.2 試驗項目與步驟 88 5.2.2.1 無機聚合物之拌合程序 88 5.2.2.2 無機聚合物補強混凝土試體製作 89 5.3 結果與討論 89 5.3.1 無機聚合物砂漿試體工程性質試驗結果 90 5.3.1.1 工作性 90 5.3.1.2 單位重 90 5.3.1.3 抗壓強度 90 5.3.1.4 動彈性模數 91 5.3.1.5 超音波速 91 5.3.1.6 綜合分析 91 5.3.2 無機聚合物砂漿纖維材料工程性質試驗結果 92 5.3.2.1 抗壓強度與抗彎強度 92 5.3.2.2 動彈性模數與超音波速 92 5.3.2.3 綜合分析 93 5.3.3 無機聚合物抗壓及抗彎補強成效試驗結果 93 5.3.3.1 抗壓補強成效 93 5.3.3.2 抗彎補強成效 94 5.4 本章小結 95 第六章 飛灰基無機聚合物應用於固化重金屬之研究 114 6.1 前言 114 6.2 試驗計畫 116 6.2.1 試驗材料與變數 116 6.2.2 試驗項目與步驟 117 6.3 結果與討論 117 6.3.1 無機聚合物工程性質 117 6.3.1.1 抗壓強度 117 6.3.1.2 單位重 118 6.3.1.3 超音波速 118 6.3.1.4 動態彈性模數 118 6.3.2 無機聚合物毒性特性溶出試驗(TCLP) 119 6.3.3 X射線繞射分析(XRD) 119 6.3.4 掃瞄式電子顯微鏡分析(SEM) 120 6.3.5 傅立葉式紅外線吸收光譜儀分析(FTIR) 120 6.3.6 固態核磁共振儀分析(NMR) 121 6.4 本章小結 121 第七章 結論與建議 134 7.1 結論 134 7.2 建議 136 參考文獻 138

    1. Wang, J.W. and T.W. Cheng, "Production geopolymer materials by coal fly ash," Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, Tainan, Taiwan, (2003).
    2. Sindhunata, J.S.J. Van Deventer, G.C. Lukey, and H. Hu, "Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization," Industrial and Engineering Chemistry Research, Vol.45, No.10, pp. 3559-3568(2006).
    3. http://www.coa.gov.tw/view.php?catid=2430.
    4. http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&id=000015 0726_VEQ8WZGQ1PICQW7HZKF71.
    5. http://www.npf.org.tw/post/3/7031.
    6. http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf.
    7. Roy, D.M., "Alkali-activated cements Opportunities and challenges," Cement and Concrete Research, Vol.29, No.2, pp. 249-254(1999).
    8. Fortune, J., "Global Dimming," BBC, 22 March (2005).
    9. McCaffrey, R., "Climate Change and the Cement Industry," GCL Magazine, pp. 1-5(2002).
    10. Mehta, P.K., "Concrete Technology for Sustainable Development,” Concrete International, pp. 47-52(1999).
    11. Mehta, P.K., "Greening of the Concrete Industry for Sustainable Development," Concrete International, pp. 23-28(2002).
    12. Davidovits, J., "Geopolymer Chemistry and Properties" Proceedings of Geopolymer '88 First European Conference on Soft Mineralurgy, France, pp. 25-48(1988).
    13. 行政院公共工程委員會,公共工程飛灰混凝土使用手冊,臺北,民國88年。
    14. 黃兆龍,卜作嵐混凝土使用手冊,臺北,科技圖書股份有限公司,民國86年。
    15. http://www.niea.gov.tw/niea/REFUSE/R20113C.htm.
    16. 宋天佑,程鵬,王杏喬,無機化學(上冊),高等教育出版社,民國93年。
    17. Lloyd, R.R., J.L. Provis, and J.S.J. Van Deventer, "Microscopy and microanalysis of inorganic polymer cements. 2, The gel binder," Journal of Materials Science, Vol.44, No.2, pp. 620-631 (2009).
    18. Dombrowski, K., A. Buchwald, and M. Weil, "The influence of calcium content on the structure and thermal performance of fly ash based geopolymers," Journal of Materials Science, Vol.42, No.9, pp. 3033-3043(2007).
    19. Lampris, C., R. Lupo, and C.R. Cheeseman, "Geopolymerisation of silt generated from construction and demolition waste washing plants," Waste Management, Vol.29, No.1, pp. 368-373(2009).
    20. Li, Z., Y. Zhang, and X. Zhou, "Short fiber reinforced geopolymer composites manufactured by extrusion," Journal of Materials in Civil Engineering, Vol.17, No.6, pp. 624-631(2005).
    21. Phair, J.W., J.S.J. Van Deventer, and J.D. Smith, "Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based "geopolymers"," Applied Geochemistry, Vol.19, No.3, pp. 423-434(2004).
    22. 蘇達根,朱錦輝,周新濤,「 礦物鍵合材料研究進展」,廣州化工, 第5期,第19-20頁(2005)。
    23. 代新祥,文梓芸,「土壤聚合物水泥」,新型建築材料, 第6期,第34-35頁(2001)。
    24. 袁玲,施惠生,汪正蘭,「土聚水泥研究與發展現狀」,房材與應用,第30卷,第2期,第21-24頁(2002)。
    25. 張書政,龔克成,「地聚合物」,材料科學與工程學報, 第21卷,第03期,第430-436頁(2003)。
    26. 翁履謙,Sagoe-Crentsil Kwesi,宋申華,張化宇,「地質聚合物合成中鋁酸鹽組分的作用機制」,硅酸鹽學報,第33卷,第03期,第276-280頁(2005)。
    27. 李海紅,徐惠忠,高原,劉子全,閻逢元,「礦物聚合物材料的研究進展」,機械工程材料,第30卷,第06期,第1-3頁(2006)。
    28. 李明霖、鄭大偉,「無機聚合物吸附重金屬之研究」, 資源與環境學術研討會,民國94年。
    29. 張文華、鄭大偉、吳傳威,「以飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究」,第十屆海峽兩岸環境保護學術研討會,民國94年。
    30. 張肇晉,「鹼激發膠凝材料工程性質之研究」,碩士論文,國立成功大學土木工程學系,民國95年。
    31. 張瑜文,「水庫淤泥應用於無機聚合膠結材」,碩士論文,國立成功大學土木工程學系,民國96年。
    32. http://0-www.engineeringvillage2.org.millennium.lib.ntust.edu.tw/contr
    oller/servlet/Controller?CID=quickSearch&database=1.
    33. Van Jaarsveld, J.G.S., J.S.J. Van Deventer, and L. Lorenzen, "The potential use of geopolymeric materials to immobilise toxic metals: Part I," Theory and applications, Minerals Engineering, Vol.10, No.7, pp. 659-669(1997).
    34. 王國東, 樊志國,盧都友,「硅鋁原料對地聚物制備和性能的影響」,硅酸鹽通報,第28卷,第02期,第234-244頁(2009)。
    35. 代新祥,文梓芸,「土壤聚合反應的影嚮因素」,建築材料學報,第03期,(2002)。
    36. 王恩,倪文,孫漢,「工業固體廢棄物制備地質聚合物技術的原理與發展」,礦產綜合利用,第02期,第30-34頁(2005)。
    37. 劉寶劍,藍俊康,「利用土聚技術固化處理重金屬的研究進展」. 四川環境,第26卷,第04期,第93-96頁(2007)。
    38. Davidovits, J., "Geopolyer Chemistry and Applications" book, (2008).
    39. Davidovits, J., "Chemistry of Geopolymeric Systems Terminology," Geopolymer '99 International Conference, France, pp. 9-40(1999).
    40. Xu, H. and J.S.J. Van Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, Vol.59, No.3, pp. 247-266(2000).
    41. Duxson, P., A. Fernandez-Jimenez , J.L. Provis, , G.C. Lukey, A. Palomo, and J. S. J. Van Deventer, "Geopolymer technology: The current state of the art," Journal of Materials Science, Vol.42, No.9, pp. 2917-2933(2007).
    42. Palomo, A., M.W. Grutzeck, and M.T. Blanco, "Alkali-activated fly ashes: A cement for the future," Cement and Concrete Research, Vol. 29, No.8, pp. 1323-1329(1999).
    43. Davidovits, J., "Chemistry of Geopolymeric Systems," Terminology Second International Conference Geopolymer '99, France, June 30 to July 2, pp. 9-40(1999).
    44. Phair, J.W. and J.S.J. Van Deventer, "Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers," Minerals Engineering, Vol.14, No.3, pp. 289-304(2001).
    45. Barbosa, V.F.F., K.J.D. MacKenzie, and C. Thaumaturgo, "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers," International Journal of Inorganic Materials, Vol.2, No.4, pp. 309-317(2000).
    46. Iwahiro, T., Y. Nakamura, R. Komatsu, and K. Ikeda, "Crystallization behavior and characteristics of mullites formed from alumina-silica gels prepared by the geopolymer technique in acidic conditions," Journal of the European Ceramic Society, Vol.21, No.14, pp. 2515-2519(2001).
    47. Davidovits, J., "Synthetic mineral polymer compound of the silicoaluminates family and preparation process," United States Patent 4472199(1984).
    48. Cioffi, R., L. Maffucci, and L. Santoro, "Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue," Resources, Conservation and Recycling, Vol.40, No.1, pp. 27-38(2003).
    49. Barbosa, V.F.F. and K.J.D. MacKenzie, "Synthesis and thermal behaviour of potassium sialate geopolymers," Materials Letters, Vol. 57, No.9-10, pp. 1477-1482(2003).
    50. Xu, H. and J.S.J. Van Deventer, "Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM," Cement and Concrete Research, Vol.32, No.11, pp. 1705-1716(2002).
    51. Barbosa, V.F.F. and K.J.D. MacKenzie, "Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate," Materials Research Bulletin, Vol.38, No.2, pp. 319-331(2003).
    52. Xu, J.Z., Y. L. Zhou, Q. Chang, and H. Qu, "Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers," Materials Letters, Vol.60, No.6, pp. 820-822(2006).
    53. Bankowski, P., L. Zou, and R. Hodges, "Reduction of metal leaching in brown coal fly ash using geopolymers," Journal of Hazardous Materials, Vol.114, No.1-3, pp. 59-67(2004).
    54. Fernandez Pereira, C., Y. Luna, X. Querol, D. Antenucci, and J. Vale, "Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers," Fuel, Vol.88, No.7, pp 1185-11963(2009).
    55. Minarikova, M. and F. Skvara, "Fixation of heavy metals in geopolymeric materials based on brown coal fly ash," Ceramics - Silikaty, Vol.50, No.4, pp. 200-207(2006).
    56. Van Jaarsveld, J.G.S., J.S.J. Van Deventer, and A. Schwartzman, "The potential use of geopolymeric materials to immobilise toxic metals: Part II," Material and leaching characteristics, Minerals Engineering, Vol.12, No.1, pp. 75-91(1999).
    57. Yunsheng, Z., S. Wei, C. Qianli, and C. Lin, "Synthesis and heavy metal immobilization behaviors of slag based geopolymer," Journal of Hazardous Materials, Vol.143, No.1-2, pp. 206-213(2007).
    58. Zhang, J., J. L. Provis, D. Feng, and J.S. J. Van Deventer, "Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+," Journal of Hazardous Materials(2008).
    59. Zhang, J., J. L. Provis, D. Feng, and J. S. J. van Deventer, "The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers," Cement and Concrete Research(2008).
    60. Xu, H. and J.S.J. Van Deventer, "Geopolymerisation of multiple minerals," Minerals Engineering, Vol.15, No.12, pp. 1131-1139(2002).
    61. Swanepoel, J.C. and C.A. Strydom, "Utilisation of fly ash in a geopolymeric material," Applied Geochemistry, Vol.17, No.8, pp. 1143-1148(2002).
    62. 枋吟霞,鄭大偉,翁祖炘,邱文通,「利用焚化灰渣製成無機聚合材料之研究」,資源與環境學術研討會,民國96年。
    63. 郭文瑛、文梓芸、殷素红、吳國林,「兩種土壤聚合物鹼激發劑的激發效果對比」,華南理工大學學報,第35卷,第08期,第103-108頁(2007)。
    64. Singh, P.S., T. Bastow, and M. Trigg, "Outstanding problems posed by nonpolymeric particulates in the synthesis of a well-structured geopolymeric material," Cement and Concrete Research, Vol.34, No.10, pp. 1943-1947(2004).
    65. Davidovits, J., "Geopolymers: Inorganic Polymeric New Materials," Journal of Thermal Analysis, Vol.37, No.8, pp. 1633-1656(1991).
    66. Van Jaarsveld, J.G.S. and J.S.J. Van Deventer, "The effect of metal contaminants on the formation and properties of waste-based geopolymers," Cement and Concrete Research, Vol.29, No.8, pp. 1189-1200(1999).
    67. Singh, P.S., T. Bastow, and M. Trigg, "Structural studies of geopolymers by 29Si and 27Al MAS-NMR," Journal of Materials Science, Vol.40, No.15, pp. 3951-3961(2005).
    68. 袁鴻昌,江堯忠,「 地聚合物材料的發展及其在我國的應用前景. 硅酸鹽通報」,第02期,第46-51頁(1998)。
    69. Krautkramer, J., H. Krautkramer, and R.L. Sierakowski, "Ultrasonic testing of materials, 4th rev ed," Applied Mechanics Reviews, Vol.44, No.5, pp. B87-B87(1991).
    70. Malhotra, V.M., "Testing Hardened Concrete: Nondestructive Methods," American Concrete Institute, Monograph, No.9, (1975).
    71. http://zh.wikipedia.org/wiki/XRD.
    72. http://www.cc.ntut.edu.tw/~coeng/download/NTUT%20XRD.doc.
    73. http://zh.wikipedia.org/wiki/SEM.
    74. 汪建民,「材料分析」,中國材料科學學會,台北,民國90年。
    75. 孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑,「儀器分析」,全威圖書有限公司,台北,民國86年。
    76. Van Jaarsveld, J.G.S., J.S.J. Van Deventer, and G.C. Lukey, "The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers," Chemical Engineering Journal, Vol.89, No.1-3, pp. 63-73(2002).
    77. Fisher, R.A., The Design of Experiments,7 th Ed,Oliver and Boyd:Edinburgh(1960).
    78. Taguchi, G., Taguchi's quality engineering handbook, John Wiley & Sons Inc(2004).
    79. 田口玄一著,陳耀茂譯,田口統計解析法.,臺北,五南圖書出版社,民國92年。
    80. 吳復強,「田口品質工程」,臺北,全威圖書有限公司,民國91年。
    81. Roy, R.K., Design of Experiments Using the Tagucki Approach:16 Steps to Product and Proces Improvement, John Wiley & Sons Inc,, (2001).
    82. 彭添富,李有豐,張寬勇,陳威杰,「碳纖維強化高分子複合材料(CFRP)補強RC構件設計之研究」,結構工程,第十六卷,第二期,第3-14頁,民國90年。
    83. 王仲宇,洪維鈞,林澄政,「矩形鋼筋混凝土橋柱碳纖維包覆耐震補強之實驗與分析」, 中國土木水利工程學刊,第71-85頁,民國90年3月。
    84. 中華民國結構工程技師公會全國聯合會,「鋼筋混凝土結構修復補強設計參考手冊」,科技圖書股份有限公司,臺北,民國97年。
    85. Sen, R., M. Shahawy, S. Sukumar, and J. Rosas, "Durability of carbon fiber reinforced polymer (CFRP) pretensioned elements under tidal/thermal cycles," ACI Structural Journal, Vol.96, No.3, pp. 450-457(1999).
    86. Pang, S.S., G. Li, S.I. Ibekwe, and D. Williams, "Structural Degradation of FRP Strengthed RC Beams Subjected to Hygrothermal and UV Attacks," Seventh Annual International Conference On Composites Engineering (ICCE/7), July 2-8, pp. 679-680(2000).
    87. Chang, T.P., B.T. Chen, J.J. Wang, and C.S. Wu, "Performance of Reactive Powder Concrete (RPC) with Different Curing Conditions and Its Retrofitting Effects on Concrete Member,." 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, Rehabilitation and Retrofitting Concrete Concrete Repair, Rehabilitation and Retrofitting II, 24-26 November(Cape Town, South Africa), pp. 425-431(2008).
    88. 李明君,張大鵬,陳桂清,吳建興,林淑蘭,「CFRP 貼片與RPC 補強之抗彎強度理論值計算與實驗值探討」,港灣報導,第74期,第1-13頁,民國95年。
    89. 宋佩瑄,「纖維混凝土實務」,臺北,現代營建雜誌社出版,民國90年。
    90. DeFazio, C., M. Arafa, and P.N. Balaguru. "Discrete fiber reinforced high temperature composites," in International SAMPE Symposium and Exhibition (Proceedings), Long Beach, CA(2006).
    91. Yunsheng, Z., S. Wei, L. Zongjin, Z. Xiangming, Eddie, and C. Chungkong, "Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber," Construction and Building Materials, Vol.22, No.3, pp. 370-383(2008).
    92. Balaguru, P. and S. Kurtz, "Use of inorganic polymer-fiber composites for repair and rehabilitation of infrastructures," Maracaibo, Venezuela, ASCE(1998).
    93. Zhang, Z.-H., X. Yao, H.J. Zhu, S.D. Hua, and Y. Chen, "Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer," Journal of Central South University of Technology (English Edition), Vol.16, No.1, pp. 49-52(2009).
    94. Andini, S., R. Cioffi, F. Colangelo, T. Grieco, F. Montagnaro, and L. Santoro, "Coal fly ash as raw material for the manufacture of geopolymer-based products," Waste Management, Vol.28, No.2, pp. 416-423(2008).
    95. Van Deventer, J.S.J., J.L. Provis, P. Duxson, and G.C. Lukey, "Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products," Journal of Hazardous Materials, Vol.139, No.3, pp. 506-513(2007).
    96. Fernandez-Jimenez, A., D.E. MacPhee, E.E. Lachowski, and A. Palomo, "Immobilization of cesium in alkaline activated fly ash matrix," Journal of Nuclear Materials, Vol.346, No.2-3, pp. 185-193(2005).
    97. Fernandez-Jimenez, A., A. Palomo, and M. Criado, "Microstructure development of alkali-activated fly ash cement: a descriptive model," Cement and Concrete Research, Vol.35, No.6, pp. 1204-1209(2005).
    98. Van Jaarsveld, J.G.S., J.S.J. Van Deventer, and L. Lorenzen, "Factors affecting the immobilization of metals in geopolymerized flyash," Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol.29, No.1, pp. 283-291(1998).
    99. Davidovits, J., "Recent progresses in concretes for nuclear waste and uranium waste containment," Concrete International, Vol.16, No.12, pp. 53-58(1994).
    100. Palomo, A. and M. Palacios, "Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes - Part II. Stabilisation of chromium and lead," Cement and Concrete Research, Vol.33, No.2, pp. 289-295(2003).
    101. Jiminez, A.M.F., E.E. Lachowski, A. Palomo, and D. Macphee, “Microstructural characterisation of alkali-activated PFA matrices for waste immobilisation," Cement and Concrete Composites, Vol.26, No.8, pp. 1001-1006(2004).
    102. Khalil, M.Y. and E. Merz, "Immobilization of intermediate-level wastes in geopolymers," Journal of Nuclear Materials, Vol.211, No.2, p. 141-148(1994).
    103. Phair, J.W., J.D. Smith, and J.S.J. Van Deventer, "Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers"," Materials Letters, Vol.57, No.28, pp. 4356-4367(2003).
    104. Perera, D.S., Z. Aly, E.R. Vance, and M. Mizumo, "Immobilization of Pb in a geopolymer matrix," Journal of the American Ceramic Society, Vol.88, No.9, pp. 2586-2588(2005).
    105. Wang, S., L. Li, and Z.H. Zhu, "Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater," Journal of Hazardous Materials, Vol.139, No.2, pp. 254-259(2007).
    106. Lee, W.K.W. and J.S.J. Van Deventer, "The effects of inorganic salt contamination on the strength and durability of geopolymers," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.211, No.2-3, p. 115-126(2002).
    107. Goretta, K.C., N. Chen, F. Gutierrez-Mora, J. L. Routbort, G.C. Lukey, and J.S.J. van Deventer, "Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag," Wear, Vol.256, No.7-8, pp. 714-719(2004).
    108. Bakharev, T., "Resistance of geopolymer materials to acid attack," Cement and Concrete Research, Vol.35, No.4, pp. 658-670(2005).

    QR CODE