簡易檢索 / 詳目顯示

研究生: 莊信楷
Hsin-Kai Chuang
論文名稱: 壓電材料應用於3D壓電噴頭設計之研究
Application of Piezoelectric Ceramics on 3D Printing Inkjet Head
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 劉孟昆
Meng-Kun Liu
蔡明忠
Ming-Jong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 120
中文關鍵詞: 3D列印壓電噴頭壓電陶瓷鐵電超音波切割
外文關鍵詞: piezo inkjet head
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在3D列印機中有許多的重要零件,壓電噴頭就是其中的一項零件,而在壓電材料在壓電噴頭中有著相當重要的角色,所以本研究一開始先購置APC(軟性)和FUJI(硬性)市售的壓電陶瓷,作為驅動噴頭使用,為了瞭解噴頭結構的變形情況,所以須進行壓電噴頭的模擬分析,由於廠商所提供之材料參數不足以建構出完整的壓電本構方程式,所以一開始先使用IEEE所提出的共振法量測所有的壓電常數,以建構出完整的方程式。從量測出來的材料參數結果中,可以發現FUJI(硬性)的壓電陶瓷較APC(軟性)有較高的剛性,但在壓電常數和介電常數方面則是相反的。在取得所有的材料參數之後,接下來便進行噴頭結構的致動模擬,壓電噴頭根據其不同的結構形式,可以區分成四種不同的形式,本研究的噴頭結構為參考市售的壓電噴頭結構,其為推擠式的致動型態,從模擬的結果中使用APC作為致動元件表現出較高的墨水腔室推擠量,其在700V推擠量分別為FUJI的7.94x10-8(m) 和APC的1.37x10-7(m),從結果中也發現過大的推擠量,會導致各個墨水腔室的串擾過高,所以本研究便針對降低串擾來降低驅動電壓,另外藉由改變壓電片的型態和組合形式將驅動電壓降到降到合理範圍。在壓電片加工和流道的成型,則是分別使用超音波切割和電化學蝕刻來達成。
    最後,對這兩種不同的材料進行成份、結晶結構、形貌、壓電及電場誘發應變進行分析,介由巨觀的材料參數比較的結果,找出材料微觀行為和巨觀機械性質表現之間的關聯性,已對之後壓電噴頭的設計有更全面地掌握。


    There are many important components inside the 3D printing machine. Piezo inkjet head is one of the key parts. And the piezoelectric material has a very important role inside the piezo inkjet head. So in the beginning of this study first purchased APC (soft) and FUJI (hard) commercially piezoelectric ceramic. In order to understand the deformation of the head structure so finite element analysis will take in place. But the material parameters provided by the manufacturer is insufficient to construct complete piezoelectric constitutive equations. So in the beginning will use the resonance method which were published by IEEE to measure all of the piezoelectric constant to construct a complete equation. From the measured results of the material parameters which it can be found that FUJI (hard) piezoelectric ceramics have a higher stiffness than APC (soft) piezoelectric ceramics. But in terms of piezoelectric constant and dielectric constant is the opposite. After obtained all the material parameters. The next step will process the inkjet head structure simulation. According to the different structural forms of the inkjet head which it can be distinguished into four different types. In this study, the structure of inkjet head was used commercially piezoelectric inkjet head structure as a reference which is a push-type actuating inkjet head. From the simulation results using APC as actuated element exhibiting higher displacement in ink chamber. In the 700 V actuating the displacement of the APC is 7.94x10-8 (m) and FUJI is 1.37x10-7 (m), respectively. According to the simulation results too much displacement inside the ink chambers will decreased the inconsistence of each ink chamber which it’s called the crosstalk. By reducing driving voltage to reduced the crosstalk. To further reducing the driving voltage to a reasonable value by modified the shape or the assembly of the piezoelectric ceramic. In the piezoelectric ceramic machining and ink channel forming that use ultrasonic machining and chemical etching to achieve, respectively.
        Finally, the analysis of the composition, crystal structure, morphology, piezoelectric and electric field-induced strain for these two different material will be carry out. And compared to the material parameters to find the correlation between the macroscopic mechanical properties microscopic behavior of the piezoelectric ceramics. To have a comprehensive knowledge to the inkjet head design.

    第一章緒論1 第二章文獻回顧與基礎理論3 2-1 壓電3 2-1-1 介電陶瓷3 2-1-2 介電3 2-1-3 極化機制3 2-1-3 壓電效應5 2-1-4 晶體結構6 2-1-5 遲滯曲線7 2-2 壓電參數12 2-2-1 特性矩陣12 2-2-2 共振法15 2-2-3 材料參數量測16 2-3 壓電噴頭22 第三章 實驗方法與使用儀器30 3-1實驗儀器30 3-1-1 掃描式電子顯微鏡30 3-1-2 X-ray繞射儀30 3-1-3 鐵電遲滯曲線及應變曲線量測31 3-2 ANSYS 有限元素分析34 3-2-1 壓電分析35 3-2-2 Harmonic Analysis35 第四章 結果與討論38 4-1 共振法38 4-1-1 APC-855及Fuji C-2的材料常數量測結果45 4-2 噴頭模擬67 4-2-1 推擠式壓電噴頭67 4-2-2 彎曲型壓電噴頭69 4-3 壓電片及流道成型79 4-3-1 壓電片切割79 4-3-2 金屬流道片成型80 4-4 材料微觀結構分析87 4-4-1 成分分析87 4-4-2 結構分析87 4-4-3 掃描式電子顯微鏡微觀分析88 4-4-4 鐵電壓電曲線量測89 4-4-5 材料常數與壓電常數90 4-5 材料性質與壓電噴頭100 4-5-1 驅動電壓100 4-5-2 溫度的影響100 4-5-3 壓電片的結構101 4-5-4 不同噴頭結構概念102 第五章 結論113 參考文獻116 附件120

    1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic Press Limited, Ohio, 1971.

    2. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 2003.
    3. Herman Wijshoff, Oc’e Technologies B.V., Venlo, Structure- and fluid-dynamics in piezo inkjet printheads,2008.
    4. 周卓明,壓電力學,台北:全華科技圖書出版,2003

    5. N. Guo and P. Cawley, D. Hitchings, The finite element analysis of the vibration characteristic of piezoelectric disks, Journal of Sound and Vibration (1992) 159(1), 115-l38.
    6. 池田拓郎著,陳世春譯,基本壓電材料學,台南:復漢出版社,1997
    7. T.L. Jordan, Z. Ounaies, Piezoelectric ceramics characterization, ICASE Report No. 2001-28.
    8. IEEE Standard on Piezoelectricity, (IEEE Standard 176-1987); Institute of Electrical and Electronic Engineers, 345 East 47th St, New York, NY 10017.
    9. M. C. Brennan and A. M. Mcgowan, Piezoelectric power requirements for active vibration control, SPIE 4th Annual Symposium on Smart Structures and Materials Proceedings, 3039 (1997), pp. 660-669.
    10.T. Jordan, Z. Ounaies, J. Tripp And P. Tcheng, Electrical properties and power considerations of a piezoelectric actuator, Materials Research Society Symposia Proceedings, 604 (2000), pp. 203-208.
    11.N. Guo and P. Cawley, D. Hitchings, The finite element analysis of the vibration characteristics of piezoelectric discs, Journal of Sound And Vibration (1992) 159(1), 115-l 38.
    12.Herman Wijshoff, Structure and fluid dynamics in piezo inkjet printheads, Netherlands 2008.
    13.Richard L. Goldberg and Stephen W. Smith, Member, IEEE, Multilayer piezoelectric ceramics for two-dimensional array transducers, IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, Vol. 41. No. 5, September 1994.
    14.Dilip K. Chatterjee, Syamal K. Ghosh, Glen S. Lichtenberg , Method of manufacturing inkjet print head base elements by sacrificial molding , US6065195.
    15.Hideo Hotomi, Osamu Ebisu, Ink jet recording apparatus, US5477253.
    16.Koto, Haruhiko, INK JET HEAD, Japanese Patent JPS6090770.
    17.Zhang R, Jiang B. and Cao W., Elastic, Piezoelectric and Dielectric Properties of Multidomain 0.67Pb(Mg1/3Nb2/3)O3 -0.33PbTiO3 Single Crystals,” J. Appl. Phy., 90, pp. 3471-3475, 2001.
    18.S. Wagner, D. Kahraman, H. Kungl, M. J. Hoffmann, C. Schuh, K. Lubitz, H. Murmann-Biesenecker, and J. A. Schmid, Effect of temperature on grain size, phase composition, and electrical properties in the relaxor-ferroelectric-system Pb (Ni 1 / 3 Nb 2 / 3 ) O 3 - Pb ( Zr , Ti ) O 3, J. Appl. Phys. 98, 024102 (2005).
    19.Clive A. Randall, Namchul Kim, John-Paul Kucera, Wenwu Cao, and Thomas R. Shrout, Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate CeramicsJ. Am. Ceram. Soc., 81 [3] 677–88 (1998),
    20.Naratip Vittayakorn, Gobwute Rujijanagul, Xiaoli Tan, Meagen A. Marquardt, and David P. Cann, The morphotropic phase boundary and dielectric properties of the x Pb(Zr1 / 2Ti1 / 2)O3 - ( 1 − x )Pb(Ni 1 / 3Nb 2 / 3 ) O 3 perovskite solid solution, J. Appl. Phys., Vol. 96, No. 9, 1 November 2004.
    21.Shujun Zhang, Sung-Min Lee, Dong-Ho Kim, Ho-Yong Lee, and Thomas R. Shrout, Temperature dependence of the dielectric, piezoelectric, and elastic constants for Pb(Mg 1 / 3 Nb 2 / 3)O3 – PbZrO3 – PbTiO3 piezocrystals, J. Appl. Phys. 102, 114103 (2007).
    22.Ribal Georges Sabat, Binu K. Mukherjee, Wei Ren, and Guomao Yang, Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics, J. Appl. Phys.101, 064111 (2007).
    23.Vladimı ́ r Kovala, Carlos Alemanyb, Jaroslav Briancina, Helena Brunckova ́ a, Karol Saksl, Effect of PMN modification on structure and electrical response of xPMN–(1-x)PZT ceramic systems, Journal of the European Ceramic Society 23 (2003) 1157–1166.
    24.Supattra Wongsaenmai, Yongyut Laosiritaworn, Supon Ananta, Rattikorn Yimnirun, Improving ferroelectric properties of Pb(Zr0.44Ti0.56)O3 ceramics by Pb(Mg1/3Nb2/3)O3 addition, Materials Science and Engineering B 128 (2006) 83–88.
    25.吳勇箴,剪力式壓電噴頭設計研究,國立成功大學航空太空工程研究所
    26.Hilarion Braun, Beaver Crack, Ohm, Piezoelectric Inkjet Print Head And Method Of Making, US5598196.
    27.www.americanpiezo.com/knowledge-center/piezo-theory/behavior.html
    28.S. Jiansirisomboon, K. Songsiri, A. Watcharapasorn, T. Tunkasiri, Mechanical properties and crack growth behavior in poled ferroelectric PMN–PZT ceramics, Applied Physics 6 (2006) 299–302.
    29.Seung-Eek Park Andthomas R. Shrout, Characteristics Of Relaxor-Based Piezoelectric Single Crystals for Ultrasonic Transducers, IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 5, September 1997.
    30.Hue P. Le, “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology, Volume 42, Number 1, January/February, 1998.

    31.K. H. Fischbeck, (Spectra), U.S. Patent 4,584,590 (1986).
    32.W. S. (Xaar) Bartky, Droplet deposition apparatus, U.S. Patent 4,879,568 (1989).
    33.A. J. Michaelis, (Xaar), Droplet deposition apparatus, U.S. Patent 4,887,100 (1989).
    34.Stephen Temple, “High Density Multi-Channel Array, Electrically Pulsed Droplet Deposition Apparatus,” U.S. patent no. 5,016,028, 1991.
    35.Yoshihisa Ohta, Shuzo Matsumoto, Taeko Murai, Hideyuki Makita, Tsutomu Sasaki, Tetsuro Hirota, Osamu Naruse, Michio Umezawa; Masayuki Iwase, Ink Jet Printing Head, U.S. Patent 5818482.

    無法下載圖示 全文公開日期 2020/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE