簡易檢索 / 詳目顯示

研究生: 杜嘉尚
Chia-Shang Tu
論文名稱: 精密電鑄結合光固化之微金屬3D列印系統改善之研究
A study on the improvement of micro metal 3D Printing System using Precision Electroforming and Stereolithography
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 江卓培
Cho-Pei Jiang
林宗翰
Tzung-Han Lin
陳建樺
Chien-Hua Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 光固化成形動態光罩精密電鑄微金屬3D列印
外文關鍵詞: Photopolymerization, dynamic mask, precision electroforming, micro-scale 3D printing metal
相關次數: 點閱:386下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究為結合光聚合反應(photopolymerization)以及精密電鑄(Precision Electroforming)之新型微金屬積層製造系統,利用投影機投射之UV光固化光固化樹脂(Stereolithography Resin)作為動態光罩,遮蔽待鑄區域以外金屬,而後進行精密電鑄製程,使未被樹脂遮蔽之金屬基材處以電化學反應沉積金屬,當金屬沉積厚度與固化樹脂厚度相同時,該層金屬則列印完成,將金屬逐層堆疊,直到金屬沉積完成後,即完成微金屬3D列印。
      本研究重點為探討待鑄物之形狀及其參數對金屬沉積成果之影響與關係,實驗之架構透過機台軟體校正得到更好的樹脂成形精度。並且以不同的電流密度及外形等參數進行精密電鑄時,觀測其電流效率、沉積金屬厚度、表面性質與邊角成形狀況,最後進行分析並找出此製程中不同形狀與不同參數間相互關係。
      此研究成功的改善微金屬進行精密電鑄時所遇到的問題,並且更穩定的使用在微金屬之3D列印製程以及微機電製程中,其成果可望在未來與產業結合,為產業創造更有價值之製程。


      Purpose of this study is novel micro scale metal additive manufacturing system that combines photopolymerization and precision electroforming. The projector uses a UV light to cure Stereolithography Resin as a dynamic mask to shield the area to be electroformed. Then, a precision electroforming process is performed to stack metal by electrochemical reaction of the metal substrate not covered by the resin. When the metal deposition thickness is the same as the thickness of the cured resin, the layer of metal is printed. The metal is stacked layer by layer until the metal deposition is completed, then, the micro scale metal 3D printing is completed.
      In this study, we will focus on the influence and relationship in different shape of the thing under electroforming and forming parameters of metal stack results. The experimental structure is corrected by the software to obtain better resin forming accuracy. Observe the current efficiency, thickness of deposited metal, surface properties and corner forming conditions when precision electroforming is performed with different current density and shape parameters. Finally, an analysis is performed to find out the relationship between different shapes and different parameters in the process.
      This research has successfully improved the problems which encountered in precision electroforming of micro-metals and it has been used more stably in the 3D printing process of micro-metals and micro-electromechanical processes. The results are expected to be combined with industry in the future to create more valuable process.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 積層製造 4 2.2 光固化成形加工 4 2.2.1 光固化立體成型 8 2.2.2 數位光處理 9 2.3 電化學加工原理 10 2.4 電鍍 12 2.4.1 法拉第電解定律 13 2.4.2 電流效率與電流密度 14 2.4.3 精密電鑄 15 2.4.4 高速電鑄 16 第三章 研究方法 18 3.1 實驗架設 18 3.1.1 旋轉升降複合軸 19 3.1.2 UV光投影機 20 3.1.3 光固化模組 22 3.1.4 電鑄模組 24 3.2 材料選用 25 3.2.1 金屬基板 25 3.2.2 光固化樹脂 26 3.2.3 酸洗液 27 3.2.4 電鑄液 27 第四章 實驗規劃 29 4.1 機台校正作業 29 4.1.1 動態光罩控制軟體校正 29 4.1.2 UV光投影機校正 31 4.2 電鑄前置作業 32 4.2.1 金屬沉積電流及時間計算 32 4.2.2 試片製作與前處理 33 4.2.3 動態光罩圖形建立 35 4.3 加工流程 36 4.3.1 光固化成形 36 4.3.2 清洗與酸洗 37 4.3.3 電鑄作業 38 4.4 後處理 39 第五章 實驗結果與討論 40 5.1 樹脂成形精度 40 5.2 電流效率 42 5.3 厚度 44 5.4 表面性質與邊角成形性 45 第六章 結論與未來展望 49 6.1 結論 49 6.2 未來展望 51 參考文獻 52

    [1] 蔣昌明, 電鍍結合光固化3D列印系統之開發, 機械工程系, 國立臺灣科技大學, 2016, pp. 67.
    [2] 韋雨雯, 電鍍結合光固化之微金屬3D列印系統之研究, 機械工程系, 國立臺灣科技大學, 2017, pp. 112.
    [3] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.
    [4] 莊精婷, 照射工作週期與強度對光固化複合樹脂之影響, 2006, (https://books.google.com.tw/books?id=c0m4XwAACAAJ).
    [5] formlabs, SLA vs. DLP: A 3D Printing Technology Comparison, (https://formlabs.com/blog/3d-printing-technology-comparison-sla-dlp/).
    [6] I. Din, H. Anwar, I. Syed, H. Zafar, L. Hasan, Projector Calibration for Pattern Projection Systems, Journal of Applied Research and Technology, 12 (2014) 80-86.
    [7] S.S. Joshi, D. Marla, 11.15 - Electrochemical Micromachining, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.) Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 373-403.
    [8] J.G. Speight, Chapter 7 - Redox Transformations, in: J.G. Speight (Ed.) Reaction Mechanisms in Environmental Engineering, Butterworth-Heinemann, 2018, pp. 231-267.
    [9] 現代電鍍網, 電鍍合金工藝的歷史與發展進程概述, 2016, (http://www.xdddw.com/zhuanye/1143/3877.html).
    [10] N. Kanani, Chapter 1 - Metal Finishing — A Key Technology?, in: N. Kanani (Ed.) Electroplating, Elsevier, Oxford, 2004, pp. 1-19.
    [11] Electrical4U, Faradays Laws of Electrolysis – First and Second Laws (Equations & Definition), (https://www.electrical4u.com/faradays-first-and-second-laws-of-electrolysis/).
    [12] M. Schlesinger, M. Paunovic, Modern Electroplating: Fifth Edition, 2011.
    [13] J. Walker, D. Halliday, R. Resnick, Fundamentals of physics Volume two. Volume two, 2014.
    [14] H. Li, K. Jiang, Y. Guo, Y. Peng, Research on Bipolar Pulse Current Electroforming in Precision Molds and Dies, Tsinghua Science & Technology, 14 (2009) 144-148.
    [15] H. YANG, T. TSAI, R. CHEIN, 精密電鑄方法及裝置, 國立中興大學精密工程研究所, (2004).
    [16] H. YANG, C. WU, C. CHANG, 高速電鑄沉積方法及裝置, 國立中興大學精密工程研究所, (2005).
    [17] T. Yamamoto, K. Igawa, H. Tang, C.-Y. Chen, T.-F.M. Chang, T. Nagoshi, O. Kudo, R. Maeda, M. Sone, Effects of current density on mechanical properties of electroplated nickel with high speed sulfamate bath, Microelectronic Engineering, 213 (2019) 18-23.

    無法下載圖示 全文公開日期 2025/01/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE