簡易檢索 / 詳目顯示

研究生: 劉德風
De-Feng Liu
論文名稱: 行動裝置式光固化3D列印系統之開發與研究
Research and Development of Mobile Device Vat Photopolymerization 3D Printing System
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 蘇威年
Wei-Nien Su
郭庭魁
Ting-Kuie Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 3D列印行動裝置智慧型手機
外文關鍵詞: 3D printing, mobile device, smartphone
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為一新型光固化3D列印系統之開發,本系統使用行動裝置(如智慧型手機、平板電腦)取代傳統光固化技術之光源及圖像產生器;使用具撓性之時規皮帶搭配剛性之滑軌,取代需精密定位之螺桿與光軸,顛覆傳統光固化3D列印系統之框架。
    此外,本研究為行動裝置式光固化3D列印系統之重要參數”曝光時間”建立一套調教之標準流程。以傅立葉轉換紅外光譜(Fourier Transform Infrared Spectrometer, FTIR)分析,量化光固化樹脂之固化程度;當系統更換光源時,可利用該量化之樹脂固化程度對曝光時間進行調教。如此一來,即使將系統之光源做更換,亦能按部就班調整製程參數,令系統發揮原有之效能。
    最後,本系統將列印成品與市售光固化機種MiiCraft做尺寸精度上之比較,做為系統效能之評估。結果顯示,本系統以智慧型手機之面板做為光源,搭配市售之光固化樹脂NT-01,能夠將XY方向之尺寸偏差控制在260μm以下。將樹脂添加抑制劑後,則可控制在180μm以下,已達到與市售之光固化3D列印系統MiiCraft相當之性能;Z軸方向之尺寸偏差在60μm以下,已優於市售之3D列印系統MiiCraft (大於300μm)。


    This study is about a mobile device vat photopolymerization 3D printing system. The system uses a mobile device instead of an expensive laser or a UV lamp to be the light source and pattern generator. Using a timing belt and a linear slide instead of a screw and a shaft to drive the Z-axis stage. This system allows larger positioning tolerance and has high z-axis resolution at the same time by virtue of the flexibility of timing belt.
    Besides, this study established a standard operating procedure for adjusting the important parameter in the 3D printing process, the “exposure time”. This procedure can quantify the curing degree of the resin by using the Fourier Transform Infrared Spectrometer (FTIR). The quantified curing degree can be used to readjust the exposure time of the 3D printing system when the light source is changed (e.g., the light source is changed from a smartphone to a tablet or another smartphone), let the 3D printing system can operate like the light source is never changed.
    Finally, measuring the dimensional deviation of the mobile device 3D printing system by printing some samples. The result shows that the dimensional deviation of the X-Y axis is under 260μm by using commercial resin “NT-01” and is under 180μm by adding inhibitor into the resin “NT-01”. The Z-axis dimensional deviation is under 60μm no matter adding inhibitor or not.

    論 文 摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 研究方法 3 第二章、文獻探討 4 2.1 積層製造 4 2.1.1 積層製造原理 4 2.1.2 積層製造技術之分類 5 2.1.3 積層製造技術比較 9 2.2 相關研究回顧 10 第三章、系統架構 15 3.1 機構 17 3.1.1 Z軸傳動機構 17 3.1.2 樹脂槽及底座 19 3.1.3 成型平台 21 3.2 光源 22 3.2.1 系統光源之基本資料 22 3.2.2 系統光源之解析度 23 3.3 控制系統 25 3.3.1 電路配置 25 3.3.2 軟體 26 3.3.3 韌體 27 3.4 光固化樹脂 30 3.5 系統運作流程 31 第四章、實驗架構與方法 33 4.1 不同光源之列印參數調整 33 4.1.1 曝光時間快篩方法 35 4.1.2 材料堆疊測試方法 37 4.1.3 傅立葉轉換紅外光譜(FTIR)分析 41 4.2 列印尺寸精度檢測方法 43 第五章、實驗結果與討論 45 5.1 不同光源之列印參數調整 實驗結果 45 5.1.1 曝光時間快篩結果 45 5.1.2 材料堆疊測試結果 46 5.1.3 傅立葉轉換紅外光譜(FTIR)分析結果 49 5.2 列印尺寸精度檢測結果 51 第六章、結論 55 未來研究方向 56 參考文獻 57 附錄一 60 附錄二 62

    [1] T. T. Wohlers, Ed., Wohlers report 2016: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Fort Collins, Colorado: Wohlers Associates, 2016.I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. New York, NY: Springer New York, 2015.
    [2] R. and Markets, “Global $2.35 Billion Desktop 3D Printer Market Analysis & Forecast Report 2016-2022 - Research and Markets.” [Online]. Available: http://www.prnewswire.com/news-releases/global-235-billion-desktop-3d-printer-market-analysis--forecast-report-2016-2022---research-and-markets-300350872.html. [Accessed: 30-Apr-2017].
    [3] P. J. Bártolo, Ed., Stereolithography. Boston, MA: Springer US, 2011.
    [4] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. New York, NY: Springer New York, 2015.
    [5] ASTM ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM International, West Conshohocken, PA, 2015,
    [6] 張富騰, “智慧型手機式3D列印系統開發之研究,” Smart phone type research and development of 3D printing systems”, 國立台灣科技大學機械工程研究所, 碩士論文, 2015.
    [7] 吳威建, ”微米級3D列印系統研究與開發”, “Development and research of micro additive layer manufacturing system”, 國立台灣科技大學機械工程研究所, 碩士論文, 2014
    [8] “Fused Deposition Modeling (FDM).” [Online]. Available: http://www.custompartnet.com/wu/fused-deposition-modeling. [Accessed: 14-Jun-2017].
    [9] 陳茂揚,”光固化快速成型系統製作3D組織工程支架”, “Research on Fabrication of Tissue Engineering Scaffolds by Photo-Curing Rapid Prototype Technology”, 國立台灣科技大學機械工程研究所, 碩士論文, 2006.
    [10] “Stereolithography,” Wikipedia. 06-Jul-2017.
    [11] “Carbon CLIP Animation.” [Online]. Available: https://www.youtube.com/watch?v=8uD0d1IPsF4 [Accessed: 8-July-2017].
    [12] 許峻豪, “低功率可見光固化製程之分析與研究,” Analysis and research of low energy visible light photopolymerization, 國立台灣科技大學機械工程研究所, 碩士論文, 2016.
    [13] “荣耀V9-荣耀家族-荣耀,” 荣耀官方网站. [Online]. Available: http://www.honor.cn/products/mobile-phones/honorv9/. [Accessed: 14-Jun-2017]
    [14] “Desktop SLA 3D Printing Technical Specifications – Formlabs.” [Online]. Available: https://formlabs.com/3d-printers/tech-specs/. [Accessed: 14-Jun-2017].
    [15] 鄭育承, “乙基咔唑硫雜蔥酮可見光起始劑於光固化系統之應用,” The Development of Thioxanthone-Ethylcarbazole Visible-Light Photoinitiator for the Application of Stereolithography, 國立台灣科技大學化學工程研究所, 碩士論文 2015.

    無法下載圖示 全文公開日期 2022/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE