簡易檢索 / 詳目顯示

研究生: 張耀邦
Yao-Bang Chang
論文名稱: 新型主動脈瘤支架設計及製作並以仿真主動脈瘤血管模型進行功能驗證
New aortic aneurysm stent design, fabrication and functional verification with simulated aortic aneurysm vascular model
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳品銓
Pin-Chuan Chen
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 136
中文關鍵詞: 主動脈瘤支架3D列印有限元素法
外文關鍵詞: Aortic aneurysm, Stent, 3D printing, Finite element method
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   血管腔內主動脈瘤修復(endovascular aneurysm repair, EVAR),已被廣泛使用於治療主動脈瘤症狀。然而目前市售鎳鈦金屬支架仍然存在血液內漏與支架位移等問題,使支架置入後仍有16%患者需進行二次手術[1],且考量到金屬支架長期在體內可能發生的併發症,目前臨床上不建議以支架置入來治療較早期的主動脈瘤(直徑較小的主動脈瘤)[2]。本研究將以真實患者主動脈瘤的模型建模,利用3D列印結合可高度客製化製造的優勢,設計出一款針對本案例主動脈瘤形貌的三維結構客製化高分子支架,並透過有限元素軟體模擬修正,增強支架與血管的接觸壓力與主動脈在近端口的密封性,有效的防止支架位移與血液內漏的發生。另外,本研究將採用可降解的高分子材質,提出對於早期的主動脈瘤患者一種治療方法。最後,本研究以仿真主動脈瘤模型實際測試,並提出個人化治療主動脈瘤支架的設計、製造與測試流程。


    The aorta is the body's largest blood vessel, which carries blood from the heart to the chest and trunk. The aortic aneurysm is a spheroid enlargement of the aorta. The aortic aneurysm could be stripped or ruptured. It also endangers the life of the patient. At present, repairing surgery using aortic aneurysm stents (AA stents) is a widely used treatment for severe aortic aneurysms. However, about 16% of patients have stent migration or endoleak due to the inability of the stent to effectively adhere to the blood vessel wall after the operation and require a second operation for treatment. In addition, considering the risk of long-term retention of metal stents in the body, it is not recommended to use AA stents in patients with early (smaller diameter) or benign aortic aneurysms currently.
    In this study, we build a 3D aortic aneurysm and vascular model based on the computed tomographic images (CT images) of patients with aortic aneurysm and design a new three-dimensional AA stent that can completely fit the wall of the aortic aneurysm and vascular around it. The parameters of the stent structure are computationally adjusted by using the finite element method to get a larger contact pressure and proximal sealing between the stent and vascular that can effectively prevent the stent migration and endoleak. This research applies 3D printing technology that can be fully customized and rapidly manufacture the designed AA stent and use degradable polymer materials to make new types of AA stents for the early and benign aortic aneurysm patients who cannot be treated by the current stent. Finally, the new AA stent designed and produced in this study will be placed and tested on a simulated aortic aneurysm platform to verify whether it can achieve the expected function. This simulated aortic aneurysm platform includes a circulatory system that mimics the blood flow of the human body and a transparent aortic aneurysm polymeric model designed and made according to the patient's CT images.

    中文摘要 III 英文摘要 IV 誌謝 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 主動脈瘤病症介紹 4 2.1.1 主動脈瘤治療方式 5 2.1.2 主動脈瘤支架治療 7 2.1.3 市售主動脈瘤支架之困境 9 2.2 可降解高分子支架 15 2.3 高分子支架製造方式 17 2.3.1 支架的各種製造方式 17 2.3.2 旋轉式3D 列印 19 2.4 支架置入與模擬 21 第三章 實驗方法 25 3.1 支架設計 29 3.1.1 設計前處理 29 3.1.2 支架結構設計 36 3.1.3 三維幾何支架設計 40 3.2 支架下壓力與徑向力模擬 42 3.2.1 支架下壓力模擬 45 3.2.2 支架徑向力模擬 47 3.3 支架置入主動脈模擬 50 3.4 支架製造 56 3.4.1 支架列印 56 3.4.2 支架覆膜 61 3.5 支架體外測試 64 第四章 實驗結果與討論 65 4.1 支架下壓力與徑向力模擬及實驗結果 65 4.1.1 支架下壓力模擬及實驗結果 65 4.1.2 支架徑向力模擬及實驗結果 67 4.2 支架置入主動脈模擬結果 74 4.2.1 支架應力數據分析 74 4.2.2 主動脈接觸壓力數據分析 76 4.2.3 主動脈接觸率比較 80 4.2.4 主動脈應力數據分析 81 4.2.5 高分子支架的優勢與劣勢分析 82 4.2.6 新型高分子支架設計概念 91 4.3 支架製造結果 98 4.3.1 支架列印結果 98 4.3.2 支架覆膜結果 99 4.4 支架體外測試結果 102 第五章 結論與未來展望 105 5.1 結論 105 5.2 未來展望 107 參考文獻 109 附錄 118 附錄(一) 隱式分析與顯式分析比較結果 118 附錄(二) 3D列印旋轉軸治具 121 附錄(三) 網格收斂性 122

    [1] Teijink, Joep A. W., et al. "Editor's choice–five year outcomes of the endurant stent graft for endovascular abdominal aortic aneurysm repair in the engage registry." European Journal of Vascular and Endovascular Surgery 58.2 (2019): 175-181.
    [2] Golledge, Jonathan "Abdominal aortic aneurysm: update on pathogenesis and medical treatments." Nature Reviews Cardiology 16.4 (2019): 225-242.
    [3] Sajid, Muhammad S., et al. "Endovascular aortic aneurysm repair (EVAR) has significantly lower perioperative mortality in comparison to open repair: a systematic review." Asian Journal of Surgery 31.3 (2008): 119-123.
    [4] Zarins, Christopher K., et al. "Stent graft migration after endovascular aneurysm repair: importance of proximal fixation." Journal of Vascular Surgery 38.6 (2003): 1264-1272.
    [5] Wang, Zhanhui, et al. "Biodegradable intestinal stents: a review." Progress in Natural Science: Materials International 24.5 (2014): 423-432.
    [6] van Prehn, Joffrey, et al. "Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks." European Journal of Vascular and Endovascular Surgery 38.1 (2009): 42-53.
    [7] Cabrera, María Sol, et al. "Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study." 3D Printing and Additive Manufacturing 4.1 (2017): 19-29.
    [8] Ahlers, Daniel, et al. "3D printing of nonplanar layers for smooth surface generation". 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, 2019.
    [9] Brewster, David C., et al. "Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery." Journal of Vascular Surgery 37.5 (2003): 1106-17.
    [10] Schermerhorn, Marc "A 66-year-old man with an abdominal aortic aneurysm: review of screening and treatment." JAMA 302.18 (2009): 2015-2022.
    [11] Aggarwal, Sourabh, et al. "Abdominal aortic aneurysm: A comprehensive review." Experimental & Clinical Cardiology 16.1 (2011): 11.
    [12] Shih, Chun-Che "胸, 腹主動脈瘤微創治療新趨勢-支架血管治療主動脈瘤." 臨床醫學 (2007): 271-282.
    [13] Isselbacher, Eric M. "Thoracic and abdominal aortic aneurysms." Circulation 111.6 (2005): 816-28.
    [14] Humphreys, W. V., et al. "Elective abdominal aortic aneurysm operations--the results of a single surgeon series of 243 consecutive operations from a district general hospital." Annals of the Royal College of Surgeons of England 82.1 (2000): 64.
    [15] Teufelsbauer, Harald, et al. "Endovascular stent grafting versus open surgical operation in patients with infrarenal aortic aneurysms: a propensity score-adjusted analysis." Circulation 106.7 (2002): 782-7.
    [16] Fan, Ya-Fen, et al. "Nursing care of endovascular aneurysm repair patients." 61.2 (2014): 95-100.
    [17] Jonker, Frederik HW, et al. "Meta-analysis of open versus endovascular repair for ruptured descending thoracic aortic aneurysm." Journal of Vascular Surgery 51.4 (2010): 1026-32, 1032 e1-1032 e2.
    [18] Sriram Radhakrishnan "Endovascular aneurysm repair (EVAR) market expected to reach $3,580 million globally, by 2023", May 2017, Retrieved from https://www.alliedmarketresearch.com/press-release/endovascular-aneurysmr-repair-market.html. (ac-cessed on 14 August 2021).
    [19] Neil Strickman "Abdominal aortic aneurysm", Baylor College of Medicine®, Retrieved from https://www.bcm.edu/healthcare/specialties/cardiovascular-medicine/cardiothoracic-surgery/abdominal-aortic-aneurysm, (accessed on 14 August 2021).
    [20] Cardiovascular and Interventional Radiological Society of Eur-ope "Thoracic endovascular aortic repair (TEVAR)", Retrieved from https://www.cirse.org/patients/ir-procedures/thoracic-endovascular-aortic-repair-tevar/ (accessed on 14 August 2021).
    [21] Parodi, Juan Carlos, et al. "Transfemoral intraluminal graft implantation for abdominal aortic aneurysms." Annals of Vascular Surgery 5.6 (1991): 491-499.
    [22] de la Motte, Louise, et al. "Should steroids be used during endovascular aortic repair?" Advances in Surgery 49 (2015): 173-84.
    [23] Sun, Zhonghua "Endovascular stent graft repair of abdominal aortic aneurysms: Current status and future directions." World Journal of Radiology 1.1 (2009): 63.
    [24] De Bruin, Jorg L., et al. "Long-term outcome of open or endovascular repair of abdominal aortic aneurysm." New England Journal of Medicine 362.20 (2010): 1881-1889.
    [25] Hammo, Sari, et al. "Outcome after endovascular repair of ruptured descending thoracic aortic aneurysm: a national multicentre study." European Journal of Vascular and Endovascular Surgery 57.6 (2019): 788-794.
    [26] Ross Milner, MD, and Dennis Gable, MD "Trust is earned: insights from the 5,000 patients enrolled in great", vol. 16, no. 3 march 2017, Retrieved from https://www.goremedical.com/resource/AV1604-EN1. (accessed on 14 August 2021).
    [27] participants, UK Small Aneurysm Trial "Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial." Journal of British Surgery 94.6 (2007): 702-708.
    [28] Merali, Fatima S and Sonia S Anand "Immediate repair compared with surveillance of small abdominal aortic aneurysms." Vascular Medicine 7.3 (2002): 249-250.
    [29] Cao, Piergiorgio, et al. "Comparison of surveillance versus aortic endografting for small aneurysm repair (CAESAR): results from a randomised trial." European Journal of Vascular and Endovascular Surgery 41.1 (2011): 13-25.
    [30] Ouriel, Kenneth, et al. "Positive impact of endovascular options for treating aneurysms early (PIVOTAL) investigators. Endovascular repair compared with surveillance for patients with small abdominal aortic aneurysms." Journal of Vascular Surgery 51.5 (2010): 1081-1087.
    [31] Filardo, Giovanni, et al. "Surgery for small asymptomatic abdominal aortic aneurysms." Cochrane Database of Systematic Reviews.2 (2015).
    [32] Hakaim Albert G. "Current endovascular treatment of abdominal aortic aneurysms." Oxford: Wiley-Blackwell, 2005. p. 288.
    [33] Kokje, Vivianne B.C., et al. "Editor's choice–pharmaceutical management of small abdominal aortic aneurysms: a systematic review of the clinical evidence." European Journal of Vascular and Endovascular Surgery 50.6 (2015): 702-713.
    [34] Rughani, Guy, et al. "Medical treatment for small abdominal aortic aneurysms." Cochrane Database of Systematic Reviews.9 (2012).
    [35] Golledge, Jonathan and Paul E. Norman "Current status of medical management for abdominal aortic aneurysm." Atherosclerosis 217.1 (2011): 57-63.
    [36] Ormiston, John A., et al. "First‐in‐human implantation of a fully bioabsorbable drug‐eluting stent: The BVS poly‐L‐lactic acid everolimus‐eluting coronary stent." Catheterization and Cardiovascular Interventions 69.1 (2007): 128-131.
    [37] Nuutinen, Juha-Pekka, et al. "Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents." Journal of Biomaterials Science 14.3 (2003): 255-66.
    [38] Kim, Ju Hyun, et al. "Mechanical modeling of self-expandable stent fabricated using braiding technology." Journal of Biomechanics 41.15 (2008): 3202-12.
    [39] Gittard, Shaun D. and Roger J. Narayan "Laser direct writing of micro-and nano-scale medical devices." Expert Review of Medical Devices 7.3 (2010): 343-356.
    [40] Liu, Shih-Jung, et al. "Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques." Annals of Biomedical Engineering 38.10 (2010): 3185-94.
    [41] Wang, Cong-er and Pei-hua Zhang "In vitro degradation behaviours of PDO monofilament and its intravascular stents with braided structure." Autex Research Journal 16.2 (2016): 80-89.
    [42] Makoyeva, A., et al. "The varying porosity of braided self-expanding stents and flow diverters: an experimental study." American Journal of Neuroradiology 34.3 (2013): 596-602.
    [43] Hung, Chia-Hung, et al. "Micromachining NiTi tubes for use in medical devices by using a femtosecond laser." Optics and Lasers in Engineering 66 (2015): 34-40.
    [44] Hung, Chia-Hung and Fuh-Yu Chang "Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser." Optics & Laser Technology 90 (2017): 1-6.
    [45] Gomes, Manuela Estima, et al. "A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour." Biomaterials 22.9 (2001): 883-889.
    [46] Flege, Christian, et al. "Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting." Journal of Materials Science: Materials in Medicine 24.1 (2013): 241-55.
    [47] Ware, Henry Oliver T., et al. "Process development for high-resolution 3D-printing of bioresorbable vascular stents." Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X. Vol. 10115. International Society for Optics and Photonics, 2017.
    [48] Guerra, Antonio J., et al. "3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems." Materials 11.9 (2018): 1679.
    [49] Park, Su A., et al. "In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system." Materials Letters 141 (2015): 355-358.
    [50] Liu, Yuan-Yuan, et al. "Dual drug spatiotemporal release from functional gradient scaffolds prepared using 3D bioprinting and electrospinning." Polymer Engineering & Science 56.2 (2016): 170-177.
    [51] Capel, Andrew J., et al. "Design and additive manufacture for flow chemistry." Lab Chip 13.23 (2013): 4583-90.
    [52] Guerra, Antonio J., et al. "A novel 3D additive manufacturing machine to biodegradable stents." Procedia Manufacturing 13 (2017): 718-723.
    [53] Zhao, Danyang, et al. "Experimental study of polymeric stent fabrication using homemade 3D printing system." Polymer Engineering & Science 59.6 (2019): 1122-1131.
    [54] Guerra, Antonio J., and Joaquim Ciurana "Stent's manufacturing field: Past, present, and future prospects." IntechOpen, 2018.
    [55] Altnji, H. E., et al. "Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: a numerical analysis." Medical Engineering & Physics 37.1 (2015): 23-33.
    [56] Badran, Mohammad F., et al. "Aneurysm neck diameter after endovascular repair of abdominal aortic aneurysms." Journal of Vascular and Interventional Radiology 13.9 (2002): 887-892.
    [57] Rodway, Alex D., et al. "Do abdominal aortic aneurysm necks increase in size faster after endovascular than open repair?" European Journal of Vascular and Endovascular Surgery 35.6 (2008): 685-693.
    [58] Kleinstreuer, C., et al. "Fluid-structure interaction analyses of stented abdominal aortic aneurysms." Annual Review of Biomedical Engineering 9 (2007): 169-204.
    [59] García, Alfonso Herrera, et al. "Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent." Journal of The Mechanical Behavior of Biomedical Materials 10 (2012): 166-175.
    [60] Altnji, H. E., et al. "Numerical simulation of the migration phenomena and type 1a endoleak of thoracic aneurysm endograft." Computer Methods in Biomechanics and Biomedical Engineering 16.sup1 (2013): 36-38.
    [61] Jayendiran, Raja, et al. "Computational analysis of Nitinol stent-graft for endovascular aortic repair (EVAR) of abdominal aortic aneurysm (AAA): crimping, sealing and fluid-structure interaction (FSI)." International Journal of Cardiology 304 (2020): 164-171.
    [62] Geith, Markus A, et al. "On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests." International Journal for Numerical Methods in Biomedical Engineering 35.11 (2019): e3249.
    [63] Oliver-Williams, Clare , et al. "Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme." Journal of British Surgery 105.1 (2018): 68-74.
    [64] 陳翊菁 "利用非傳統機械製程建構專業醫療 教育訓練之人工動脈瘤模型" 碩士, 機械工程系, 國立台灣科技大學, (2019).
    [65] Raghavan, Madhavan L, et al. "Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model." Annals of Biomedical Engineering 24.5 (1996): 573-582.
    [66] England, Andrew and Richard Mc Williams "Endovascular aortic aneurysm repair (EVAR)." The Ulster Medical Journal 82.1 (2013): 3.
    [67] COOK Medical LLC "Zenith Flex® AAA endovascular graft bifurcated main body graft", Retrieved from https://www.cookmedical.com/products/ndo_aaamain_webds/ (accessed on 14 A-ugust 2021).
    [68] De Bock, Sander, et al. "Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics." Journal of Biomechanics 46.14 (2013): 2477-2482.
    [69] TDS. FlexiFil, Formfutura BV: Nijmegan, the Netherlands, Retrieved from https://gzhls.at/blob/ldb/0/4/1/7/4ddb1d5c17caa564a350f22266fb04ae1b39.pdf (accessed on 14 August 2021).
    [70] Jorgen, Bergstrom "Best material models in 2021 – thermopl-astic elastomers", PolymerFEM, LLC, 2021, Retrieved from https://polymerfem.com/best-material-models-in-2021-thermoplastic-elastomers/ (accessed on 14 August 2021).
    [71] De Bock, Sander, et al. "Virtual evaluation of stent graft deployment: a validated modeling and simulation study." Journal of The Mechanical Behavior of Biomedical Materials 13 (2012): 129-39.
    [72] Divringi, Kaan and Can Ozcan "Advanced shape memory alloy material models for ansys." Ozen Engineering Inc 94085.408 (2009).
    [73] Bukala, Jakub, et al. "Experimental tests, FEM constitutive modeling and validation of PLGA bioresorbable polymer for stent applications." Materials 13.8 (2020).
    [74] Rahman, Hafizur, et al. "Energy absorption and mechanical performance of functionally graded soft-hard lattice structures." Materials 14.6 (2021).
    [75] Prasad, Anamika, et al. "A computational framework for investigating the positional stability of aortic endografts." Biomech Model Mechanobiol 12.5 (2013): 869-87.
    [76] Bonet, Javier and A. J. Burton "A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications." Communications in Numerical Methods in Engineering 14.5 (1998): 437-449.
    [77] Stelzmann, S. "Die große elementbibliothek in. Ls-dyna". Proceedings of the ANSYS Conference & 28th CADFEM Users’ Meeting. 2010.
    [78] Erhart, Tobias. "Review of solid element formulations in LS-DYNA: Properties, limits, advantages, disadvantages". Proceedings of the LS-DYNA Developers’ Forum, Stuttgart, Germany. 2011.
    [79] ANSYS ® LS-DYNA, release 2021R1,ANSYS, help system, LS-DYNA user's guide, ANSYS, Inc.
    [80] Prior, Alan M. "Applications of implicit and explicit finite element techniques to metal forming." Journal of Materials Processing Technology 45.1-4 (1994): 649-656.
    [81] Chen, Pin-Chuan, et al. "Engineering additive manufacturing and molding techniques to create lifelike willis’ circle simulators with aneurysms for training neurosurgeons." Polymers 12.12 (2020): 2901.
    [82] Auricchio, Ferdinando, et al. "Shape-memory alloys: macromo-delling and numerical simulations of the superelastic behavior." Computer Methods in Applied Mechanics and Engineering 146.3-4 (1997): 281-312.
    [83] LS-DYNA "Contact types", Livemore Software Technology Corp., Retrieved from https://www.dynasupport.com/tutorial/contact-modeling-in-ls-dyna/contact-types (accessed on 14 August 2021).
    [84] Gastaldi, Dario, et al. "Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning." Biomechanics and Modeling in Mechanobiology 9.5 (2010): 551-561.
    [85] Chang, Fuh-Yu, et al. "Using 3D printing and femtosecond laser micromachining to fabricate biodegradable peripheral vascular stents with high structural uniformity and dimensional precision." The International Journal of Advanced Manufacturing Technology (2021): 1-14.
    [86] Marlin core team "G0-G1 - Linear move", Retrieved from https://marlinfw.org/docs/gcode/G000-G001.html (accessed on 14 August 2021).
    [87] Montgomery, Douglas C. "Design and analysis of experiments." John Wiley & Sons, 2017.
    [88] Lei, Yang, et al. "A new process for customized patient-specific aortic stent graft using 3D printing technique." Medical Engineering & Physics 77 (2020): 80-87.
    [89] Cheng, Christopher P., et al. "Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise." Journal of Vascular Surgery 37.1 (2003): 118-123.
    [90] Resch, Timothy, et al. "Distal migration of stent-grafts after endovascular repair of abdominal aortic aneurysms." Journal of Vascular and Interventional Radiology 10.3 (1999): 257-264.
    [91] Zahedmanesh, Houman and Caitríona Lally "Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis." Medical & Biological Engineering & Computing 47.4 (2009): 385-393.
    [92] Egron, Sandrine, et al. "Radial force: an underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves." ASAIO Journal 64.4 (2018): 536-543.

    無法下載圖示 全文公開日期 2031/10/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE