簡易檢索 / 詳目顯示

研究生: 簡瑩淇
YING-QI JIAN
論文名稱: 氧化銫鎢修飾電紡聚偏氟乙烯纖維膜及網印電極之熱釋電元件性能之研究
Effect of Cesium Tungsten Oxide on properties of pyroelectric element of electrospun PVDF fiber membranes with screen-printing electrodes.
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 邱顯堂
Shen-Tarng Chiou
鄭國彬
Guo-Bin Zheng
張棋榕
Chi-Jung Chang
吳志明
Jyh Ming Wu
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 117
中文關鍵詞: 靜電紡絲技術聚偏氟乙烯氧化銫鎢光熱轉換特性網版印刷熱釋電特性
外文關鍵詞: Electrospinning technology, Poly(vinylidene difluoride) (PVDF), Cesium tungsten oxide, Photothermal conversion properties, Screen printing, Pyroelectric properties
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於全球能源危機,可再生奈米能源的開發成為最重要的研究領域之一。太陽能提供了豐富且無處不在的熱能來源,是可再生能源之中的首選。
聚偏氟乙烯(PVDF)擁有良好的熱釋電和壓電性能,且具有可撓曲、良好的生物相容性且能大量生產等優勢,近年來受到廣泛研究。本研究通過使用靜電紡絲(ES)技術為PVDF纖維同時提供機械拉伸和電極化,獲得奈米等級納米纖維。
透過將光熱轉換材料(Cs0.33WO3)添加至導電油墨中,發現藉由網版印刷技術搭配蜿蜒(蛇)型電極(Serpentine electrode, SRE)及指叉型電極(Interdigitated electrode, IDE)於PVDF纖維膜作為上層導電電極時,其熱釋電電流輸出分別提升184.61及95.72nA。
為有效提升PVDF奈米纖維膜熱吸收及溫度轉換能力,將進一步將Cs0.33WO3添加於PVDF中,同樣使用摻有光熱粉體的導電油墨網版,作為印刷漿料印刷前述中最佳化電極圖騰於PVDF/ Cs0.33WO3奈米纖維膜中作為上層導電電極。
此外,先前的研究發現添加納米顆粒,例如碳納米材料或金屬納米顆粒,可以幫助提高電紡PVDF納米纖維的β含量。添加PVDF/Cs0.33WO3奈米纖維膜,在光熱轉換及β結晶相的部分相較於PVDF奈米纖維膜分別提升了63.3℃及11%。
在熱釋電輸出的部分, PVDF/Cs0.33WO3奈米纖維膜電壓及電流輸出分別提升至4.36 V及214.24 nA,其功率由PVDF奈米纖維膜的640.36 nW提升至934.97 nW。
為提升其輸出功率以供應後續應用開發,本研究將採用不同大小的負載電阻於PVDF/Cs0.33WO3奈米纖維膜,量測在不同負載電阻下對熱釋電發電機輸出電壓及電流的影響,當RL在20 MΩ時,PVDF/Cs0.33WO3奈米纖維膜時獲得最佳輸出功率。


Due to the global energy crisis, the development of renewable nano-energy has become one of the most important research areas. Solar energy provides a rich and ubiquitous source of heat energy and is the first choice among renewable energy sources.
Polyvinylidene fluoride (PVDF) has good pyroelectric and piezoelectric properties, and has the advantages of flexibility, good biocompatibility, and mass production. It has been widely studied in recent years. In this study, electrospinning (ES) technology was used to provide both PVDF fibers with mechanical stretching and electrical polarization to obtain nanoscale nanofibers.
By adding the photothermal conversion material (Cs0.33WO3) to the conductive ink, it was found that the screen printing technology was combined with a serpentine electrode (SRE) and an interdigitated electrode (IDE) in PVDF When the fiber membrane is used as the upper conductive electrode, its pyroelectric current output increases by 184.61 and 95.72nA, respectively.
In order to effectively improve the heat absorption and temperature conversion capabilities of PVDF nanofiber membranes, Cs0.33WO3 will be further added to PVDF, and the same conductive ink screen doped with photothermal powder will be used as the printing paste to print the above optimized electrode Totem is used as the upper conductive electrode in PVDF/ Cs0.33WO3 nanofiber membrane.
In addition, previous studies have found that the addition of nanoparticles, such as carbon nanomaterials or metal nanoparticles, can help increase the beta content of electrospun PVDF nanofibers. Adding PVDF/Cs0.33WO3 nanofiber membrane, compared with PVDF nanofiber membrane in the light-to-heat conversion and β crystalline phase parts, respectively increased by 63.3℃ and 11%.
In the pyroelectric output part, the PVDF/ Cs0.33WO3 nanofiber membrane voltage and current output were increased to 4.36 V and 214.24 nA, respectively, and its power was increased from 640.36 nW to 934.97 nW of PVDF nanofiber membrane.
In order to improve its output power for subsequent application development, this study will use different size load resistors on PVDF/ Cs0.33WO3 nanofiber membrane to measure the effect of different load resistances on the output voltage and current of the pyroelectric generator When RL is 20 MΩ, PVDF/Cs0.33WO3 nanofiber membrane can get the best output power.

目錄 摘要 I Abstract III 目錄 V 表目錄 X 圖目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第2章 文獻回顧 6 2.1 熱釋電奈米發電機 6 2.1.1 熱釋電歷史 8 2.1.2 熱釋電原理 9 2.1.3 熱釋電材料 13 2.2 靜電紡絲技術 17 2.2.1 靜電紡絲原理 17 2.2.2 靜電紡絲應用於製備PVDF 奈米纖維 20 2.3 光熱轉換 22 2.3.1 光熱材料 23 2.4 網版印刷 24 2.5 導電油墨 25 第3章 實驗 27 3.1 實驗藥品 27 3.2 實驗設備及儀器 28 3.3 實驗流程圖 30 3.3.1 添加光熱轉換材料Cs0.33WO3對PVDF奈米纖維膜熱釋電性能分析 31 3.4 試片製備 32 3.4.1 合成Cs0.33WO3粉體 32 3.4.2 PVDF電紡前驅液配置 33 3.4.3 PVDF/Cs0.33WO3電紡前驅液配置 33 3.4.4 靜電紡絲程序 34 3.4.5 網版印刷之導電漿料製備 46 3.4.6 上層電極層-網版印刷 49 3.4.7 下層導電層-鎳銅織物 50 3.5 分析方法 38 3.5.1 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 38 3.5.2 場發射穿透式電子顯微鏡 (TEM) 41 3.5.3 X射線繞射儀 (XRD) 43 3.5.4 傅立葉紅外線光譜儀 (FTIR) 42 3.5.5 紫外光-可見光/近紅外光分析儀(UV-VIS/NIR) 43 3.5.6 熱示差分析儀 (DSC) 43 3.5.7 熱重損失分析儀 (TGA) 44 3.5.8 拉力測試 (Tension Test) 44 3.5.9 兩點探針電阻量測 38 3.5.10 薄膜電阻(Sheet Resistance) 38 3.5.11 光熱轉換性能 39 3.5.12 熱釋電性能輸出量測-電壓、電流 39 3.5.13 熱釋電輸出功率分析 41 3.5.14 橋式整流器(Bridge Rectifier) 45 第4章 結果與討論 46 4.1 網版印刷電極對PVDF奈米纖維膜性質分析 46 4.1.1 網版印刷圖騰兩點探針電阻分析 51 4.1.2 IDE及SRE熱釋電性能分析 52 4.2 Cs0.33WO3/PVDF奈米纖維膜物性分析 60 4.2.1 顯微結構分析 60 4.2.2 結晶度分析 63 4.2.3 光熱轉換性能分析 67 4.2.4 光學特性分析 69 4.2.5 熱性能分析 70 4.2.6 機械性能分析 73 4.3 Cs0.33WO3對PVDF奈米纖維膜熱釋電性質分析 74 4.3.1 熱釋電性能分析 74 第5章 結論 80 第6章 參考文獻 82

1. He, Q.B., et al., Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Conversion and Management, 2013. 73: p. 150-157.
2. Lamnatou, C. and D. Chemisana, Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials. Renewable and Sustainable Energy Reviews, 2013. 18: p. 271-287.
3. Huang, X., et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
4. Yang, K., et al., In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Advanced materials, 2012. 24(41): p. 5586-5592.
5. McKinley, I.M., R. Kandilian, and L. Pilon, Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3– 0.055PbTiO3single crystals. Smart Materials and Structures, 2012. 21(3): p. 035015.
6. Kandilian, R., A. Navid, and L. Pilon, The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Materials and Structures, 2011. 20(5): p. 055020.
7. Kouchachvili, L. and M. Ikura, Improving the efficiency of pyroelectric conversion. International Journal of Energy Research, 2008. 32(4): p. 328-335.
8. Ikura, M., Conversion of low-grade heat to electricity using pyroelectric copolymer. Ferroelectrics, 2002. 267(1): p. 403-408.
9. Al Abdullah, K., et al., The Enhancement of PVDF Pyroelectricity (Pyroelectric Coefficient and Dipole Moment) by Inclusions. Energy Procedia, 2017. 119: p. 545-555.
10. Lang, S.B. and D.K. Das-Gupta, Chapter 1 - Pyroelectricity: Fundamentals and applications, in Handbook of Advanced Electronic and Photonic Materials and Devices, H. Singh Nalwa, Editor. 2001, Academic Press: Burlington. p. 1-55.
11. Karim, H., et al., Pyroelectric energy harvesting with a high Curie temperature material LiNbO3. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Vol. 9799. 2016: SPIE.
12. Wu, J., et al., Enhanced Pyroelectric Catalysis of BaTiO3 Nanowires for Utilizing Waste Heat in Pollution Treatment. ACS Applied Materials & Interfaces, 2018. 10(44): p. 37963-37973.
13. Wang, Y.R., et al., A flexible piezoelectric force sensor based on PVDF fabrics. Smart Materials and Structures, 2011. 20(4): p. 045009.
14. Chen, H.-C., C.-H. Tsai, and M.-C. Yang, Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. Journal of Polymer Research, 2011. 18(3): p. 319-327.
15. Ruan, L., et al., Properties and Applications of the β Phase Poly (vinylidene fluoride). Polymers, 2018. 10(3): p. 228.
16. Dutta, B., et al., Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Advances, 2015. 5(127): p. 105422-105434.
17. Levi, N., et al., Properties of Polyvinylidene Difluoride−Carbon Nanotube Blends. Nano Letters, 2004. 4(7): p. 1267-1271.
18. Andrew, J., J. Mack, and D. Clarke, Electrospinning of polyvinylidene difluoride-based nanocomposite fibers. Journal of Materials Research, 2008. 23(1): p. 105-114.
19. Ren, X. and Y. Dzenis, Novel Continuous Poly(vinylidene fluoride) Nanofibers. MRS Proceedings, 2006. 920.
20. Zhao, Z., et al., Preparation and properties of electrospun poly (vinylidene fluoride) membranes. Journal of applied polymer science, 2005. 97(2): p. 466-474.
21. Zheng, J., et al., Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromolecular rapid communications, 2007. 28(22): p. 2159-2162.
22. Yee, W.A., et al., Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer, 2007. 48(2): p. 512-521.
23. Chen, S., et al., Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer, 2012. 53(6): p. 1404-1408.
24. Kliem, H. and R. Tadros-Morgane, Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir–Blodgett films. Journal of Physics D: Applied Physics, 2005. 38(12): p. 1860-1868.
25. Tadros-Morgane, R. and H. Kliem, Polarization curves of Langmuir–Blodgett PVDF-copolymer films. Journal of Physics D: Applied Physics, 2006. 39(22): p. 4872-4877.
26. Zhu, H., et al., Asymmetric Ferroelectric Switching Based on an Al/PVDF Langmuir-Blodgett Nanofilm/PEDOT: PSS/Al Device. Molecular Crystals and Liquid Crystals, 2015. 618(1): p. 89-94.
27. Kliem, H. and R. Tadros-Morgane, Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir–Blodgett films. Journal of Physics D: Applied Physics, 2005. 38(12): p. 1860.
28. Zhang, X., et al., Room temperature magnetoresistance effects in ferroelectric poly (vinylidene fluoride) spin valves. Journal of Materials Chemistry C, 2017. 5(21): p. 5055-5062.
29. Benz, M., W.B. Euler, and O.J. Gregory, The role of solution phase water on the deposition of thin films of poly (vinylidene fluoride). Macromolecules, 2002. 35(7): p. 2682-2688.
30. Ramasundaram, S., et al., Direct preparation of nanoscale thin films of poly (vinylidene fluoride) containing β‐crystalline phase by heat‐controlled spin coating. Macromolecular Chemistry and Physics, 2008. 209(24): p. 2516-2526.
31. Cardoso, V., et al., Micro and nanofilms of poly (vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. Smart Materials and Structures, 2011. 20(8): p. 087002.
32. He, X. and K. Yao, Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly (vinylidene fluoride) thin films. Applied physics letters, 2006. 89(11): p. 112909.
33. Kang, S.J., et al., Spin cast ferroelectric beta poly (vinylidene fluoride) thin films via rapid thermal annealing. Applied Physics Letters, 2008. 92(1): p. 012921.
34. Sencadas, V., R. Gregorio Filho, and S. Lanceros-Mendez, Processing and characterization of a novel nonporous poly (vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 2006. 352(21-22): p. 2226-2229.
35. Branciforti, M.C., et al., New technique of processing highly oriented poly (vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 2007. 45(19): p. 2793-2801.
36. Mansouri, S., T.F. Sheikholeslami, and A. Behzadmehr, Investigation on the electrospun PVDF/NP-ZnO nanofibers for application in environmental energy harvesting. Journal of Materials Research and Technology, 2019. 8(2): p. 1608-1615.
37. Zhao, T., et al., An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale, 2016. 8(15): p. 8111-8117.
38. Bai, H., et al., W 18 O 49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. Journal of Materials Chemistry A, 2013. 1(20): p. 6125-6129.
39. Zhou, J., et al., Three‐dimensional tungsten oxide nanowire networks. Advanced Materials, 2005. 17(17): p. 2107-2110.
40. Choi, J., et al., Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chemical Engineering Journal, 2015. 281: p. 236-242.
41. Guo, C., et al., Facile synthesis of homogeneous Cs x WO 3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. Journal of Materials Chemistry, 2011. 21(13): p. 5099-5105.
42. Hernandez-Sanchez, B.A., et al., Morphological and phase controlled tungsten based nanoparticles: synthesis and characterization of scheelite, wolframite, and oxide nanomaterials. Chemistry of Materials, 2008. 20(21): p. 6643-6656.
43. Guo, C., et al., Novel synthesis of homogenous Cs x WO 3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 2010. 20(38): p. 8227-8229.
44. Chen, C.-J. and D.-H. Chen, Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale research letters, 2013. 8(1): p. 57.
45. Dutta, B., et al., NiO@SiO2/PVDF: A Flexible Polymer Nanocomposite for a High Performance Human Body Motion-Based Energy Harvester and Tactile e-Skin Mechanosensor. ACS Sustainable Chemistry & Engineering, 2018. 6(8): p. 10505-10516.
46. Zabek, D., et al., Graphene ink laminate structures on poly (vinylidene difluoride)(pvdf) for pyroelectric thermal energy harvesting and waste heat recovery. ACS applied materials & interfaces, 2017. 9(10): p. 9161-9167.
47. Zabek, D., et al., Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Advanced Energy Materials, 2015. 5(8): p. 1401891.
48. Gao, W., et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016. 529(7587): p. 509-514.
49. Choi, S., et al., Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv Mater, 2016. 28(22): p. 4203-18.
50. Cima, M.J., Next-generation wearable electronics. Nature Biotechnology, 2014. 32(7): p. 642-643.
51. Khan, Y., et al., Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv Mater, 2016. 28(22): p. 4373-95.
52. Feng, S., et al., Immunochromatographic diagnostic test analysis using Google Glass. ACS nano, 2014. 8(3): p. 3069-3079.
53. Wile, D.J., R. Ranawaya, and Z.H. Kiss, Smart watch accelerometry for analysis and diagnosis of tremor. Journal of neuroscience methods, 2014. 230: p. 1-4.
54. Slimani, Y., et al., Ni0. 4Cu0. 2Zn0. 4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties. Ultrasonics sonochemistry, 2019. 59: p. 104757.
55. Hadimani, R.L., et al., Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Materials and Structures, 2013. 22(7): p. 075017.
56. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
57. Choi, N.S., et al., Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed Engl, 2012. 51(40): p. 9994-10024.
58. Roy, K., et al., A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Applied Nano Materials, 2019. 2(4): p. 2013-2025.
59. Guo, R., et al., A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring. Materials & Design, 2019. 182: p. 108025.
60. Karan, S.K., D. Mandal, and B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale, 2015. 7(24): p. 10655-10666.
61. Guzowski, B., R. Gozdur, and M. Łakomski, Thermoelectric Generation Based on Spin Seebeck Effect in NiFeCuMo Alloy. Acta Physica Polonica A, 2018. 133: p. 541-543.
62. Heremans, J.P., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008. 321(5888): p. 554-7.
63. Whatmore, R.W., Pyroelectric devices and materials. Reports on Progress in Physics, 1986. 49(12): p. 1335-1386.
64. Guyomar, D. and G. Sebald, Pyroelectric/electrocaloric energy scanvenging and cooling capabilities in ferroelectric materials. International Journal of Applied Electromagnetics and Mechanics, 2009. 31: p. 41-46.
65. Bowen, C., et al., Pyroelectric Materials and Devices for Energy Harvesting Applications. Energy Environ. Sci., 2014. 7.
66. Zhao, T., et al., An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale, 2016. 8(15): p. 8111-7.
67. Lee, J.-H., et al., Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Advanced Materials, 2014. 26(5): p. 765-769.
68. Ye, C.p., T. Tamagawa, and D.L. Polla, Experimental studies on primary and secondary pyroelectric effects in Pb(ZrxTi1−x)O3, PbTiO3, and ZnO thin films. Journal of Applied Physics, 1991. 70(10): p. 5538-5543.
69. Yang, Y., et al., Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Letters, 2012. 12(6): p. 2833-2838.
70. Lang, S., Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool. Physics Today - PHYS TODAY, 2005. 58: p. 31-36.
71. Anton, F., Process and apparatus for preparing artificial threads. 1934, Google Patents.
72. Yang, Y., et al., Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead-Free KNbO3 Nanowires. Advanced Materials, 2012. 24(39): p. 5357-5362.
73. Tien, N.T., et al., Utilizing Highly Crystalline Pyroelectric Material as Functional Gate Dielectric in Organic Thin-Film Transistors. Advanced Materials, 2009. 21(8): p. 910-915.
74. Hunter, S., et al., Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques. Proc SPIE, 2012. 8377.
75. Wu, C.-M., et al., Infrared-driven poly(vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting. Composites Science and Technology, 2019. 178: p. 26-32.
76. Ko, Y.J., B.K. Yun, and J.H. Jung, A 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-based pyroelectric generator and temperature sensor. Journal of the Korean Physical Society, 2015. 66(4): p. 713-716.
77. Mane, P., et al., Cyclic energy harvesting from pyroelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control, 2011. 58(1): p. 10-7.
78. Sebald, G., et al., Electrocaloric and pyroelectric properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 single crystals. Journal of Applied Physics, 2006. 100(12): p. 124112.
79. Khodayari, A., et al., Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009. 56(4): p. 693-699.
80. Guyomar, D., S. Pruvost, and G. Sebald, Energy harvesting based on FE-FE transition in ferroelectric single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008. 55(2): p. 279-285.
81. Hao, X., Y. Zhao, and Q. Zhang, Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films. The Journal of Physical Chemistry C, 2015. 119(33): p. 18877-18885.
82. Luo, L., et al., Electrocaloric effect and pyroelectric energy harvesting of (0.94−x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics. Journal of the European Ceramic Society, 2017. 37(8): p. 2803-2812.
83. Zhu, H., et al., Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions. Journal of Applied Physics, 2009. 106(12): p. 124102.
84. Olsen, R.B., D.A. Bruno, and J.M. Briscoe, Pyroelectric conversion cycles. Journal of Applied Physics, 1985. 58(12): p. 4709-4716.
85. Olsen, R.B., Ferroelectric Conversion of Heat to Electrical EnergyA Demonstration. Journal of Energy, 1982. 6(2): p. 91-95.
86. Navid, A., et al., Towards optimization of a pyroelectric energy converter for harvesting waste heat. International Journal of Heat and Mass Transfer, 2010. 53(19): p. 4060-4070.
87. Navid, A., C.S. Lynch, and L. Pilon, Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Materials and Structures, 2010. 19(5): p. 055006.
88. Olsen, R.B., et al., A pyroelectric energy converter which employs regeneration. Ferroelectrics, 1981. 38(1): p. 975-978.
89. Olsen, R.B., et al., Cascaded pyroelectric energy converter. Ferroelectrics, 1984. 59(1): p. 205-219.
90. Olsen, R.B. and D.D. Brown, High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics, 1982. 40(1): p. 17-27.
91. Whatmore, R.W., P.C. Osbond, and N.M. Shorrocks, Ferroelectric materials for thermal IR detectors. Ferroelectrics, 1987. 76(1): p. 351-367.
92. Banan, M., R.B. Lal, and A. Batra, Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications. Journal of Materials Science, 1992. 27(9): p. 2291-2297.
93. Bassett, D.C., Developments in crystalline polymers. Vol. 1. 1982: Springer.
94. Dubois, J.-C., Ferroelectric polymers: Chemistry, physics, and applications. Edited by Hari Singh Nalwa, Marcel Dekker, New York 1995, XII, 895 pp., hardcover, $225.00, ISBN 0-8247-9468-0. Advanced Materials, 1996. 8(6): p. 542-542.
95. Li, L., et al., Studies on the transformation process of PVDF from α to β phase by stretching. RSC Advances, 2014. 4(8): p. 3938-3943.
96. Drioli, E. and G. Barbieri, Membrane Engineering for the Treatment of Gases: Gas-separation problems combined with membrane reactors. Vol. 2. 2011: Royal Society of Chemistry.
97. Lovinger, A.J., Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules, 1982. 15(1): p. 40-44.
98. Jr., W.M.P. and D.J. Luca, The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics, 1978. 49(10): p. 5042-5047.
99. Gregorio, J., Rinaldo and M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 1994. 32(5): p. 859-870.
100. Hasegawa, R., M. Kobayashi, and H. Tadokoro, Molecular Conformation and Packing of Poly(vinylidene fluoride). Stability of Three Crystalline Forms and the Effect of High Pressure. Polymer Journal, 1972. 3(5): p. 591-599.
101. Bachmann, M.A., et al., An infrared study of phase‐III poly(vinylidene fluoride). Journal of Applied Physics, 1979. 50(10): p. 6106-6112.
102. Benedetti, E., et al., FTIR-microspectroscopy and DSC studies of poly(vinylidene fluoride). Polymer International, 1996. 41(1): p. 35-41.
103. Shepelin, N.A., et al., New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy & Environmental Science, 2019. 12(4): p. 1143-1176.
104. Vatansever Bayramol, D., et al., Preparation and Characterization of PVDF-Based Nanocomposites. 2014. p. 131-144.
105. Mittal, V., Synthesis techniques for polymer nanocomposites. 2015: John Wiley & Sons.
106. El Mohajir, B.-E. and N. Heymans, Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001. 42(13): p. 5661-5667.
107. Pan, H., et al., Polar phase formation in poly(vinylidene fluoride) induced by melt annealing. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(20): p. 1433-1437.
108. Kang, S.J., et al., Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Applied Physics Letters, 2008. 92(1): p. 012921.
109. Sencadas, V., R. Gregorio, and S. Lanceros-Méndez, α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 2009. 48(3): p. 514-525.
110. Lando, J.B., H.G. Olf, and A. Peterlin, Nuclear magnetic resonance and x-ray determination of the structure of poly(vinylidene fluoride). Journal of Polymer Science Part A-1: Polymer Chemistry, 1966. 4(4): p. 941-951.
111. Ruan, L., et al., Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers, 2018. 10: p. 228.
112. Salimi, A. and A.A. Yousefi, Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 2003. 22(6): p. 699-704.
113. Doll, W.W. and J.B. Lando, The polymorphism of poly(vinylidene fluoride) IV. The structure of high-pressure-crystallized poly(vinylidene fluoride). Journal of Macromolecular Science, Part B, 1970. 4(4): p. 889-896.
114. Zhong, G., et al., Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends. Polymer, 2011. 52(10): p. 2228-2237.
115. Baji, A., et al., Improved Tensile Strength and Ferroelectric Phase Content of Self-Assembled Polyvinylidene Fluoride Fiber Yarns. Macromolecular Materials and Engineering, 2012. 297(3): p. 209-213.
116. Lund, A. and B. Hagström, Melt spinning of β-phase poly(vinylidene fluoride) yarns with and without a conductive core. Journal of Applied Polymer Science, 2011. 120(2): p. 1080-1089.
117. Zheng, J., et al., Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning. Macromolecular Rapid Communications, 2007. 28(22): p. 2159-2162.
118. Ribeiro, C., et al., Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. Soft Materials, 2010. 8(3): p. 274-287.
119. Gradys, A., et al., Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007. 461(1): p. 153-157.
120. Furukawa, T., Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions, 1989. 18(3-4): p. 143-211.
121. Sun, J., et al., Modification on crystallization of poly(vinylidene fluoride) (PVDF) by solvent extraction of poly(methyl methacrylate) (PMMA) in PVDF/PMMA blends. Frontiers of Materials Science, 2011. 5(4): p. 388-400.
122. Andrew, J.S. and D.R. Clarke, Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers. Langmuir, 2008. 24(3): p. 670-672.
123. Neppalli, R., et al., The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). European Polymer Journal, 2012. 49.
124. Francis, L., et al., Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods. Energy, 2011. 36(1): p. 627-632.
125. Francis, L., et al., Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomater, 2010. 6(10): p. 4100-9.
126. Lijo, F., et al., Electrospun polyimide/titanium dioxide composite nanofibrous membrane by electrospinning and electrospraying. J Nanosci Nanotechnol, 2011. 11(2): p. 1154-9.
127. Marsano, E., L. Francis, and F. Giunco, Polyamide 6 nanofibrous nonwovens via electrospinning. Journal of Applied Polymer Science, 2010. 117(3): p. 1754-1765.
128. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
129. Asmatulu, R., Highly Hydrophilic Electrospun Polyacrylonitrile/ Polyvinypyrrolidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment. 2016.
130. Larrondo, L. and R. St. John Manley, Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science: Polymer Physics Edition, 1981. 19(6): p. 933-940.
131. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 2001. 89(5): p. 3018-3026.
132. Haslauer, C.M., et al., Collagen–PCL Sheath–Core Bicomponent Electrospun Scaffolds Increase Osteogenic Differentiation and Calcium Accretion of Human Adipose-Derived Stem Cells. Journal of Biomaterials Science, Polymer Edition, 2011. 22(13): p. 1695-1712.
133. Taylor, G.I. and M.D. Van Dyke, Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515): p. 453-475.
134. Cavaliere, S., et al., Electrospinning: designed architectures for energy conversion and storage devices. Energy & Environmental Science, 2011. 4(12): p. 4761-4785.
135. Bognitzki, M., et al., Nanostructured Fibers via Electrospinning. Advanced Materials, 2001. 13(1): p. 70-72.
136. Hardick, O., B. Stevens, and D. Bracewell, Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency. Nature Precedings, 2011. 46.
137. Sencadas, V., et al., α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 2006. 514-516: p. 872-876.
138. Ramakrishna, S., et al., An Introduction to Electrospinning and Nanofibers. 2005: WORLD SCIENTIFIC. 396.
139. Ahn, Y., et al., Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride). The Journal of Physical Chemistry C, 2013. 117(22): p. 11791-11799.
140. Young Jin, H., C. Sejin, and K. Han Seong, Structural deformation of PVDF nanoweb due to electrospinning behavior affected by solvent ratio. e-Polymers, 2018. 18(4): p. 339-345.
141. Lee, H., et al., Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega, 2019. 4(2): p. 2610-2617.
142. Ko, Y.J., B.K. Yun, and J.H. Jung, A 0.7 Pb (Mg 1/3 Nb 2/3) O 3-0.3 PbTiO 3-based pyroelectric generator and temperature sensor. Journal of the Korean Physical Society, 2015. 66(4): p. 713-716.
143. Zhang, H., et al., Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy, 2016. 101: p. 202-210.
144. Cheng, L., et al., Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS nano, 2012. 6(6): p. 5605-5613.
145. Yang, K., et al., In Vitro and In Vivo Near-Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials, 2012. 24(41): p. 5586-5592.
146. Zhao, T., et al., An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale, 2016. 8(15): p. 8111-8117.
147. Weissleder, R., A clearer vision for in vivo imaging. Nature biotechnology, 2001. 19(4): p. 316-317.
148. Yin, S., A. Riapanitra, and Y. Asakura, Nanomaterials for infrared shielding smart coatings. Functional Materials Letters, 2018. 11(05): p. 1830004.
149. Hernandez-Sanchez, B.A., et al., Morphological and Phase Controlled Tungsten Based Nanoparticles: Synthesis and Characterization of Scheelites, Wolframites, and Oxides Nanomaterials. Chemistry of materials : a publication of the American Chemical Society, 2008. 20(21): p. 6643-6656.
150. Derby, B., Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. 2010. p. 395-414.
151. Li, S., et al., A Stretchable Multicolor Display and Touch Interface Using Photopatterning and Transfer Printing. Advanced Materials, 2016. 28(44): p. 9770-9775.
152. Zhang, C., et al., Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Organic Electronics, 2017. 45: p. 190-197.
153. Choi, M., et al., Stretchable Active Matrix Inorganic Light-Emitting Diode Display Enabled by Overlay-Aligned Roll-Transfer Printing. Advanced Functional Materials, 2017. 27(11): p. 1606005.
154. He, P., et al., Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale, 2018. 10(12): p. 5599-5606.
155. Hu, Q., et al., Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016. 8(9): p. 5350-5357.
156. Kelly, A.G., et al., All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Applied Physics Letters, 2016. 109(2): p. 023107.
157. Li, H., et al., High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. Journal of Physics D: Applied Physics, 2019. 52(11): p. 115501.
158. Matsuhisa, N., et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications, 2015. 6(1): p. 7461.
159. Søndergaard, R.R., M. Hösel, and F.C. Krebs, Roll-to-Roll fabrication of large area functional organic materials. Journal of Polymer Science Part B: Polymer Physics, 2013. 51(1): p. 16-34.
160. Kamyshny, A. and S. Magdassi, Conductive nanomaterials for printed electronics. Small, 2014. 10(17): p. 3515-35.
161. He, P. and B. Derby, Inkjet printing ultra-large graphene oxide flakes. 2D Materials, 2017. 4(2): p. 021021.
162. Secor, E.B., et al., Inkjet Printing of High Conductivity, Flexible Graphene Patterns. J Phys Chem Lett, 2013. 4(8): p. 1347-51.
163. Su, Y., et al., Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Research, 2013. 6(11): p. 842-852.
164. Kelly, A.G., et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017. 356(6333): p. 69-73.
165. McManus, D., et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol, 2017. 12(4): p. 343-350.
166. Shin, K.Y., J.Y. Hong, and J. Jang, Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv Mater, 2011. 23(18): p. 2113-8.
167. Secor, E.B., et al., Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014. 26(26): p. 4533-8.
168. Hyun, W.J., et al., High-Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Advanced Materials, 2015. 27(1): p. 109-115.
169. Xu, Y., et al., Screen-Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks. Advanced Energy Materials, 2013. 3(8): p. 1035-1040.
170. Karagiannidis, P.G., et al., Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. ACS Nano, 2017. 11(3): p. 2742-2755.
171. Wang, H. and Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy & Environmental Science, 2012. 5(8): p. 8182-8188.
172. Qian, M., et al., Electron field emission from screen-printed graphene films. Nanotechnology, 2009. 20(42): p. 425702.
173. Song, D., et al., High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. ACS Nano, 2017. 11(7): p. 7431-7439.
174. Secor, E.B., et al., Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders. ACS Applied Materials & Interfaces, 2017. 9(35): p. 29418-29423.
175. He, P., et al., Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Applied Materials & Interfaces, 2019. 11(35): p. 32225-32234.
176. Louwen, A., et al., A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016. 147: p. 295-314.
177. Raut, N.C. and K. Al-Shamery, Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C, 2018. 6(7): p. 1618-1641.
178. Cho, C.-K., et al., Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells - SOLAR ENERG MATER SOLAR CELLS, 2011. 95: p. 3269-3275.
179. Kordás, K., et al., Inkjet printing of electrically conductive patterns of carbon nanotubes. Small, 2006. 2(8-9): p. 1021-5.
180. Zhong, Y.L., et al., Scalable production of graphene via wet chemistry: Progress and challenges. Materials Today, 2014. 18.
181. Stankovich, S., et al., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 2007. 45: p. 1558-1565.
182. Cao, J., et al., Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. J Am Chem Soc, 2017. 139(48): p. 17446-17456.
183. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008. 3(9): p. 563-8.
184. Yang, Y., et al., Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019. 11(1): p. 16-33.
185. Paton, K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater, 2014. 13(6): p. 624-30.
186. Lanceros-Méndez, S., et al., FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED β-PVDF FILMS. Journal of Macromolecular Science, Part B, 2001. 40(3-4): p. 517-527.
187. Teyssedre, G., A. Bernes, and C. Lacabanne, Influence of the crystalline phase on the molecular mobility of PVDF. Journal of Polymer Science Part B: Polymer Physics, 1993. 31(13): p. 2027-2034.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE