簡易檢索 / 詳目顯示

研究生: 詹惟評
Wei-Ping Zhan
論文名稱: 壓電性聚偏氟乙烯薄膜植入糖尿病大鼠消化道及其血糖變化之研究
Piezoelectric Polyvinylidene Fluoride Film as Intestinal Sleeve Implants Installed in Digestive Tract for Blood Glucose Control
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 張浩銘
Hao-Ming Chang
何明樺
Ming-Hua Ho
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 聚偏氟二乙烯壓電材料縱向拉伸製程糖尿病血糖
外文關鍵詞: Polyvinylidene fluoride, Piezoelectric material, Machine Direction Orientation(MDO), Diabetes, Blood glucose
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前的糖尿病治療方法多透過外科手術來治療病態性肥胖的糖尿症患者,透過減少腸道養分吸收來達到控制血糖的效果,目的在於改變消化道結構以影響胃腸道的運作方式,然而手術治療所衍伸的副作用通常是不可逆的,因此開發出非侵入性的植入物來治療二型糖尿病。本研究利用聚偏氟二乙烯壓電薄膜製成的高分子腸套管,植入二型糖尿病大鼠的十二指腸端,改善其血糖及體重,進而達到治療肥胖及二型糖尿病的效果,聚偏二氟乙烯為一種優良的生醫材料,其具有良好的機械性質、生物相容性及化學穩定性,為評估壓電性薄膜對於胃腸道的影響,本研究分別使用兩種不同製程的PVDF薄膜植入二型糖尿病大鼠的為腸道內,分別使用溶劑流延法及縱向拉伸製程(MDO)來進行製備,這兩種製程所產出的PVDF薄膜分別在機械強度、結晶相的組成、壓電性能有不同的差異,MDO製程的薄膜與溶劑流延法的薄膜相比擁有較高的機械強度,透過FTIR、Raman及XRD可以判斷薄膜的結晶相組成,從數據上可判斷MDO製程的薄膜由較多的β相所組成,而β相的多寡則影響到薄膜的壓電性能,因此MDO製程的PVDF薄膜可以產生較高的電壓,從大鼠動物實驗的結果可以判斷,安裝薄膜的組別在體重及血糖控制上得到極大的改善,兩種安裝薄膜的組別在血糖和體重上則沒有太大的差異。


    Current diabetes treatments are usually used the surgery to treat morbidly obese diabetics. The manipulation of blood glucose of surgical treatment is from the reducing intestinal nutrient absorption, however the drawback would be altered the structure of the digestive tract. In addition, the side effects of surgical treatment are usually irreversible. Moreover, non-invasive implants have been proved can be used to treat type 2 diabetes. The purpose of this study was for preparation of piezoelectric polymeric tube from polyvinylidene fluoride (PVDF) and then implanted in the duodenal barrier in the intestine for controling the blood sugar and body weight for type 2 diabetic rats. Polyvinylidene fluoride is an excellent biomedical material from its inert properties, and it also has good mechanical properties, biocompatibility and chemical stability. To evaluate the piezoelectric effect of PVDF in the treatment of type 2 diabetic rats, we prepared two PVDF membranes for implantation in the intestine of obesity and type 2 diabetes. The first PVDF film is prepared by the solvent casting method. The second PVDF film is prepared by machine direction orientation (MDO). The mechanical strength, phase composition and piezoelectric properties of PVDF film varied with of film formation process. PVDF films prepared from MDO process have higher mechanical strength than the film prepared from solvent casting. The composition of crystal phases from PVDF films have benn judged by FTIR, Raman spectroscopy and XRD. The results show that the film prepared by the MDO process has more β phase than the film prepared from solvent casting method. Piezoelectric properties are related to the contents of the beta phase, which mean that the high beta phase content generated higher voltages. The body weight and blood glucose of type II diabetes rats has been controlled for the rats implanted with PVDF film in the intestine when compared with unimplanted group. However, there were no significant differences for rats implanted with PVDF films prepared from different processes.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 1.1. 研究動機與目的 1 第二章 文獻回顧 3 2.1. 醫療器械 3 2.2. 生醫材料 5 2.3. 壓電材料 7 壓電效應 7 2.4. 聚偏二氟乙烯(Polypolyvinylidene difluoride, PVDF) 9 聚偏二氟乙烯壓電性質之相關研究 10 2.5. 縱向拉伸(machine direction orientation , MDO)製程 11 2.6. 糖尿病 12 2.6.1. 糖尿病類型 13 2.6.2. 治療方式 14 2.7. 手術植入物 16 2.7.1. 胃水球(intragastric balloon, IGB) 16 2.7.2. 胃束帶(Laparoscopic Adjustable Gastric Banding , LAGB) 17 2.7.3. 腸套管(duodenal-jejunal sleeve bypass , DJSB) 18 2.7.4. 腸套管植入安全性評估 20 2.8. 糖尿病誘發方法 22 2.8.1. 飲食誘發 22 2.8.2. 藥物誘發 22 第三章 實驗材料與方法 27 3.1. 實驗藥品及耗材 27 3.2. 實驗儀器 27 3.3. 實驗設計 30 3.3.1. 聚偏二氟乙烯高分子薄膜製備 30 3.3.2. 腸套管製備 32 3.3.3. 動物飼養 32 3.3.4. 糖尿病誘發 33 3.3.5. 手術方式 33 第四章 結果與討論 37 4.1. 掃描式電子顯微鏡成像分析 37 4.2. 機械性質(拉伸) 40 4.3. 紅外線光譜成像分析 42 4.4. 拉曼光譜元素像分析 44 4.5. X光繞射分析 47 4.6. 壓電性能之測試 49 4.7. 電阻抗分析 51 4.8. 細胞毒性測試 53 4.9. 糖尿病誘發過程 54 4.10. 血糖控制 55 4.11. 體重變化 58 第五章 結論 60 參考文獻 62

    1. Association, A.D., 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care, 2019. 42(Supplement 1): p. S13-S28.
    2. Atlas, I.D., International Diabetes Federation, 2013. ISBN 2930229853, 2015: p. 7.
    3. Maruthur, N.M., et al., Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med, 2016. 164(11): p. 740-51.
    4. Buchwald, H., et al., Bariatric surgery: a systematic review and meta-analysis. Jama, 2004. 292(14): p. 1724-37.
    5. Patel, S.R.H., et al., The duodenal-jejunal bypass sleeve (EndoBarrier Gastrointestinal Liner) for weight loss and treatment of type 2 diabetes. Surgery for Obesity and Related Diseases, 2013. 9(3): p. 482-484.
    6. Hu, S., et al., Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Composites Part B: Engineering, 2019. 160: p. 595-604.
    7. Tipnis, N.P. and D.J. Burgess, Sterilization of implantable polymer-based medical devices: A review. Int J Pharm, 2018. 544(2): p. 455-460.
    8. Khan, W., et al., Implantable Medical Devices, in Focal Controlled Drug Delivery, A.J. Domb and W. Khan, Editors. 2014, Springer US: Boston, MA. p. 33-59.
    9. Black, J., Biological performance of materials: fundamentals of biocompatibility. 2005: Crc Press.
    10. Williams, D.F. and J. Cunningham, Materials in clinical dentistry. 1979: Oxford University Press, USA.
    11. Park, J.B., Biomaterials science and engineering. 2012: Springer Science & Business Media.
    12. Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510.
    13. Black, J. and G. Hastings, (1998) Handbook of Biomaterials Properties. Chapman Hall.
    14. Daniels, A., M. Zhu, and A. Tiwari, Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013. 60(12): p. 2626-2633.
    15. Gautschi, G., Piezoelectric Materials for Sensors, in Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, G. Gautschi, Editor. 2002, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 13-50.
    16. Wang, Z.L. and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006. 312(5771): p. 242.
    17. Wang, X., et al., Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science, 2007. 316(5821): p. 102.
    18. Wang, X., Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy, 2012. 1(1): p. 13-24.
    19. Hu, Y. and Z.L. Wang, Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy, 2014. 14: p. 3-14.
    20. Lee, M., et al., A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials, 2012. 24(13): p. 1759-1764.
    21. Park, K.-I., et al., Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Advanced Materials, 2012. 24(22): p. 2999-3004.
    22. Siddiqui, S., et al., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy, 2015. 15: p. 177-185.
    23. Yu, Y., et al., Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Advanced Materials, 2015. 27(33): p. 4938-4944.
    24. Zhang, M., et al., A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy, 2015. 13: p. 298-305.
    25. Nunes-Pereira, J., C. Costa, and S. Lanceros-Méndez, Polymer composites and blends for battery separators: state of the art, challenges and future trends. Journal of Power Sources, 2015. 281: p. 378-398.
    26. Nunes-Pereira, J., C.M. Costa, and S. Lanceros-Méndez, Polymer composites and blends for battery separators: State of the art, challenges and future trends. Journal of Power Sources, 2015. 281: p. 378-398.
    27. Bar-Cohen, Y. and Q. Zhang, Electroactive polymer actuators and sensors. MRS bulletin, 2008. 33(3): p. 173-181.
    28. Pan, H., et al., Polar phase formation in poly (vinylidene fluoride) induced by melt annealing. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(20): p. 1433-1437.
    29. Hattori, T., M. Kanaoka, and H. Ohigashi, Improved piezoelectricity in thick lamellar β‐form crystals of poly (vinylidene fluoride) crystallized under high pressure. Journal of applied physics, 1996. 79(4): p. 2016-2022.
    30. Doll, W. and J. Lando, The polymorphism of poly (vinylidene fluoride) IV. The structure of high-pressure-crystallized poly (vinylidene fluoride). Journal of Macromolecular Science, Part B, 1970. 4(4): p. 889-896.
    31. Ribeiro, C., et al., Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Materials, 2010. 8(3): p. 274-287.
    32. Lund, A. and B. Hagström, Melt spinning of β‐phase poly (vinylidene fluoride) yarns with and without a conductive core. Journal of Applied Polymer Science, 2011. 120(2): p. 1080-1089.
    33. Gradys, A., et al., Crystallization of poly (vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007. 461(1-2): p. 153-157.
    34. Yang, D. and Y. Chen, β-phase formation of poly (vinylidene fluoride) from the melt induced by quenching. Journal of materials science letters, 1987. 6(5): p. 599-603.
    35. Martins, P., et al., Linear anhysteretic direct magnetoelectric effect in Ni0. 5Zn0. 5Fe2O4/poly (vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites. Journal of Physics D: Applied Physics, 2011. 44(48): p. 482001.
    36. Martins, P., A.C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 2014. 39(4): p. 683-706.
    37. Poulsen, M. and S. Ducharme, Why ferroelectric polyvinylidene fluoride is special. IEEE Transactions on Dielectrics and Electrical Insulation, 2010. 17(4): p. 1028-1035.
    38. Ameduri, B., From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chemical Reviews, 2009. 109(12): p. 6632-6686.
    39. Yang, X., et al., Spatially‐confined crystallization of poly (vinylidene fluoride). Polymer international, 2000. 49(11): p. 1525-1528.
    40. Tadokoro, H., Structure and properties of crystalline polymers. Polymer, 1984. 25(2): p. 147-164.
    41. Anousheh, N. and A. Soldera, Influence of regio-irregular structures on thermal behaviour of PVDF. Polymer, 2017. 125: p. 154-160.
    42. Sadeghi, F. and P.J. Carreau, Properties of uniaxially stretched polypropylene films. Canadian Journal of Chemical Engineering, 2008. 86(6): p. 1103-1110.
    43. Hatfield, E., Chapter 10 - Machine direction oriented film technology, in Multilayer Flexible Packaging, J.R. Wagner, Editor. 2010, William Andrew Publishing: Boston. p. 113-118.
    44. Tenenbaum, M., et al., Physiopathologie du diabète. Revue Francophone des Laboratoires, 2018. 2018(502): p. 26-32.
    45. Sarwar, N., et al., Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 2010. 375(9733): p. 2215-22.
    46. George, C.M., et al., Management of Blood Glucose with Noninsulin Therapies in Type 2 Diabetes. Am Fam Physician, 2015. 92(1): p. 27-34.
    47. Atkinson, M.A., G.S. Eisenbarth, and A.W. Michels, Type 1 diabetes. The Lancet, 2014. 383(9911): p. 69-82.
    48. Chetan, M.R., S.L. Thrower, and P. Narendran, What is type 1 diabetes? Medicine, 2019. 47(1): p. 5-9.
    49. Bingley, P.J., Clinical Applications of Diabetes Antibody Testing. The Journal of Clinical Endocrinology & Metabolism, 2010. 95(1): p. 25-33.
    50. Skyler, J.S., Prevention and Reversal of Type 1 Diabetes—Past Challenges and Future Opportunities. Diabetes Care, 2015. 38(6): p. 997-1007.
    51. Ling, C. and T. Rönn, Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metabolism, 2019. 29(5): p. 1028-1044.
    52. Hurtado, M.D. and A. Vella, What is type 2 diabetes? Medicine, 2019. 47(1): p. 10-15.
    53. Rubino, F., et al., Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annual review of medicine, 2010. 61: p. 393-411.
    54. Nandagopal, R., R.J. Brown, and K.I. Rother, Resolution of type 2 diabetes following bariatric surgery: implications for adults and adolescents. Diabetes Technology & Therapeutics, 2010. 12(8): p. 671-677.
    55. Mathus-Vliegen, E.M.H. and G.N.J. Tytgat, Intragastric balloon for treatment-resistant obesity: safety, tolerance, and efficacy of 1-year balloon treatment followed by a 1-year balloon-free follow-up. Gastrointestinal Endoscopy, 2005. 61(1): p. 19-27.
    56. Benjamin, S.B., et al., Double-blind controlled trial of the Garren-Edwards gastric bubble: an adjunctive treatment for exogenous obesity. Gastroenterology, 1988. 95(3): p. 581-8.
    57. Kotzampassi, K., et al., 500 Intragastric Balloons: What Happens 5 Years Thereafter? Obesity Surgery, 2012. 22(6): p. 896-903.
    58. Issa, I., A. Taha, and C. Azar, Acute pancreatitis caused by intragastric balloon: A case report. Obesity Research & Clinical Practice, 2016. 10(3): p. 340-343.
    59. Wang, W., et al., Weight loss and metabolic improvements in obese patients undergoing gastric banding and gastric banded plication: A comparison. Nutrition, 2019. 57: p. 290-299.
    60. Chapman, A.E., et al., Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review. Surgery, 2004. 135(3): p. 326-351.
    61. Committee, S.G., SAGES guideline for clinical application of laparoscopic bariatric surgery. Surgical endoscopy, 2008. 22(10): p. 2281-2300.
    62. Forner, P.M., T.P. Ramacciotti, and R.V. Lord, Mo1943 Safety and Efficacy of an Endoscopically Placed Duodenal-jejunal Bypass Device (EndoBarrier®): Outcomes in 112 Patients. Gastroenterology, 2016. 150(4, Supplement 1): p. S822.
    63. Gheibi, S., K. Kashfi, and A. Ghasemi, A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy, 2017. 95: p. 605-613.
    64. Lenzen, S., The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 2008. 51(2): p. 216-226.
    65. Szkudelski, T., The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 2001. 50(6): p. 537-546.
    66. Zhou, W., et al., Diabetogenic agent alloxan is a proteasome inhibitor. Biochemical and Biophysical Research Communications, 2017. 488(2): p. 400-406.
    67. Gomori, G. and M.G. Goldner, Acute Nature of Alloxan Damage. Proceedings of the Society for Experimental Biology and Medicine, 1945. 58(3): p. 232-233.
    68. Elsner, M., et al., Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia, 2002. 45(11): p. 1542-1549.
    69. Cohen, G. and R.E. Heikkila, The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem, 1974. 249(8): p. 2447-52.
    70. Munday, R., Dialuric acid autoxidation. Effects of transition metals on the reaction rate and on the generation of "active oxygen" species. Biochem Pharmacol, 1988. 37(3): p. 409-13.
    71. Winterbourn, C.C., W.B. Cowden, and H.C. Sutton, Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms. Biochem Pharmacol, 1989. 38(4): p. 611-8.
    72. Winterbourn, C.C. and R. Munday, Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH. formation. Biochem Pharmacol, 1989. 38(2): p. 271-7.
    73. Eleazu, C.O., et al., Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes & Metabolic Disorders, 2013. 12(1): p. 60.
    74. Elsner, M., et al., Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia, 2000. 43(12): p. 1528-1533.
    75. RERUP, C.C., Drugs producing diabetes through damage of the insulin secreting cells. Pharmacological reviews, 1970. 22(4): p. 485-518.
    76. Murata, M., et al., Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochemical pharmacology, 1999. 57(8): p. 881-887.
    77. Nallasamy, P. and S. Mohan, Vibrational spectroscopic characterization of form II poly (vinylidene fluoride). 2005.
    78. Lazarow, A., Spontaneous recovery from alloxan diabetes in the rat. Diabetes, 1952. 1(5): p. 363-72.
    79. Jain, D.K. and R.K. Arya, Anomalies in alloxan-induced diabetic model: It is better to standardize it first. Indian journal of pharmacology, 2011. 43(1): p. 91-91.
    80. Tighsazzadeh, M., J.C. Mitchell, and J.S. Boateng, Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platform for treatment of glaucoma. International Journal of Pharmaceutics, 2019.
    81. Patil, N., et al., A Study on the Chain−Particle Interaction and Aspect Ratio of Nanoparticles on Structure Development of a Linear Polymer. Macromolecules, 2010. 43(16): p. 6749-6759.
    82. Hilczer, B., et al., Properties of PVDF-MCM41 nanocomposites studied by dielectric, Raman and NMR spectroscopy. Ferroelectrics, 2014. 472.
    83. Bhatti, I. and I. Bhatti, Effect of Annealing and Time of Crystallization on Structural and Optical Properties of PVDF Thin Film Using Acetone as Solvent. 2019.
    84. Ramesh, D., One-step fabrication of biomimetic PVDF-BaTiO3 nanofibrous composite using DoE. Materials Research Express, 2018. 5: p. 085308.
    85. Cai, X., et al., A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv., 2017. 7: p. 15382-15389.
    86. Imamura, R., A.B. Silva, and R. Gregorio Jr., γ→β Phase transformation induced in poly(vinylidene fluoride) by stretching. Journal of Applied Polymer Science, 2008. 110(5): p. 3242-3246.
    87. Jiang, X., et al., Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly(vinylidene fluoride) film. Current Applied Physics, 2016. 17.
    88. Barnakov, Y.A., et al., Light intensity-induced phase transitions in graphene oxide doped polyvinylidene fluoride. Optical Materials Express, 2018. 8(9): p. 2579-2585.
    89. Kim, T., Characterization and applications of piezoelectric polymers. 2015, Technical Report No. UCB/EECS-2015-253, Electrical Engineering and Computer ….
    90. Cai, X., et al., A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Advances, 2017. 7(25): p. 15382-15389.
    91. Cady, W.G., Piezoelectricity; an introduction to the theory and applications of electromechanical phenomena in crystals. 1946, New York; London: McGraw-Hill Book Company, Inc.
    92. Standardization, I.O.f., ISO 10993-5. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods. 1992, The Organization Geneva.
    93. Aguirre, V., et al., An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet‐induced obesity. Obesity, 2008. 16(12): p. 2585-2592.

    無法下載圖示 全文公開日期 2024/12/18 (校內網路)
    全文公開日期 2024/12/18 (校外網路)
    全文公開日期 2024/12/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE