簡易檢索 / 詳目顯示

研究生: 翁依呈
Yi-Cheng Wong
論文名稱: 基於微擾注入鎖定技術之非侵入式射頻血糖感測器研發
Development of Non-invasive Radio-Frequency Blood Glucose Sensors Based on Perturbation-Injection-Locked Technology
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 曾昭雄
Chao-Hsiung Tseng
林丁丙
Ding-Bing Lin
洪子聖
Tzyy-Sheng Horng
張盛富
Sheng-Fuh Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 70
中文關鍵詞: 微擾注入鎖定射頻血糖感測手指互補式隙環共振器
外文關鍵詞: perturbation, injection-locked, radio-frequency, blood glucose sensing, finger, complementary split ring resonator(CSRR)
相關次數: 點閱:401下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用微擾注入鎖定(perturbation-injection-locked, PIL)技術,發展一種新型非侵入式血糖感測器,透過手指因血糖變化造成的介質改變,放上感測器造成微擾所產生的頻率偏移,經注入振盪器中,使振盪器的頻率偏移。在此微擾注入鎖定感測器裡,使用互補式隙環共振器(CSRR)作為感測器中的感測元件,該感測元件之設計與測試詳述於論文中。再之,為加強感測靈敏度,本論文亦設計自振式互補式隙環共振器,並使用網路分析儀擷取因血糖變化造成之相位斜率變化。此外,整合上述感測元件與自振式共振器,可形成一「微擾注入鎖定感測器」,並應用於觀察受測者飲用含糖飲料前後的手指血糖變化對感測器振盪頻率造成的影響。實驗期間並使用血糖機量測結果作對照,可初步找出頻率變化量與血糖值間的關係。根據實驗結果,發現本感測器分析的頻率變化量測結果與血糖機所量測出的數值,前20分鐘趨勢相同,並於實驗尾聲趨於平緩,目前雖然尚未得到頻率偏移量與血糖機數值間的絕對關係,但由分析結果可觀察出此感測器具有非侵入式感測血糖的潛力。


    This thesis develops a new type of non-invasive sensor for blood glucose sensing based on perturbation-injection-locked (PIL) technology. As a finger put upon the resonant-type sensor, it makes a resonant frequency shift based on the perturbation theory. It is because the blood glucose fluctuation of the finger leads to the permittivity variation. The output signal from the oscillator goes through the CSRR sensing component and lead to a phase shift. This phase-modulated signal injects into the oscillator to generate an oscillation frequency deviation. This amount of the oscillation frequency deviation will be employed to relate the blood glucose variation. The design and evaluation of the complementary split-ring resonator (CSRR), which is treated as the sensing component in the PIL sensor, is described in detail in this thesis. Additionally, the self-oscillating CSRR is further designed for improving sensitivity. The results of the transmission phase slopes caused by the blood glucose fluctuations are carried out by the vector network analyzer. Consequentially, by integrating the above-mentioned sensing component, CSRR, and self-oscillating CSRR into a “perturbation-injection-locked sensor”, it can be applied to observe the blood glucose change of the subject under test before and after drinking sugary drinks. The relationship between oscillation frequency deviations and blood glucose levels can be initially obtained by comparing with the measured results of the blood glucose meter in experiment. According to the experimental results, the distribution of the measured oscillation frequency deviations detected by the sensor has the similar trend with the data measured by blood glucose meter during the first 20 minutes. Although the absolute relationship between oscillation frequency deviations and the values measured by the blood glucose meter have not been obtained yet, the sensor developed in thesis experimentally demonstrates the great potential for non-invasive blood glucose sensing.

    摘要 i Abstract ii 目錄 iii 第一章 序論 1 1.1 研究背景與動機 1 1.2 非侵入式血糖感測技術現況 5 1.3 章節說明 11 第二章 互補式隙環共振器 13 2.1 互補式隙環共振器設計 13 2.2 互補式隙環共振器糖水與血糖之量測 17 2.2.1 糖水量測結果探討 17 2.2.2 血糖量測結果探討 20 第三章 自振式互補式隙環共振器 24 3.1 枝幹耦合器設計與量測 24 3.2 放大器設計與量測 27 3.3 自振式共振器設計 29 3.4 自振式共振器糖水與血糖之量測 33 3.4.1 自振式共振器A之糖水量測結果探討 34 3.4.2 自振式共振器A之血糖量測結果探討 35 3.4.3 自振式共振器B之糖水量測結果探討 39 3.4.4 自振式共振器B之血糖量測結果探討 41 第四章 微擾注入鎖定感測器 44 4.1 感測器設計 44 4.2 微擾注入鎖定感測器糖水與血糖之量測 47 4.2.1 微擾注入鎖定感測器A之糖水量測結果探討 48 4.2.2 微擾注入鎖定感測器A之血糖量測結果探討 49 4.2.3 微擾注入鎖定感測器B之糖水量測結果探討 51 4.2.4 微擾注入鎖定感測器B之血糖量測結果探討 53 第五章 結論 59 參考文獻 60

    [1] World Health Organization, Diabetes, [online], https://www.who.int/
    [2] 衛生福利部國民健康署, 三高防治專區, [online], https://www.hpa.gov.tw/
    [3] 羅氏Accu-Chek血糖機, [online], https://www.accu-chek.com.tw/
    [4] 拜耳CONTOUR血糖機, [online], https://www.ascensia.com.tw/
    [5] 雅培freestyle血糖機, [online], https://www.tw.abbott/
    [6] 壯生OneTouch血糖機, [online], https://www.onetouch.tw/
    [7] 國立教育部廣播電台, 文教新聞, [online], https://www.ner.gov.tw/
    [8] CNBC, Technology, [online], https://www.cnbc.com/
    [9] 科技新報, 穿戴式裝置, [online], http://technews.tw/
    [10] A. E. Omer, G. Shaker, S. Safavi-Naeini, K. Murray, and R. Hughson, “Glucose Levels Detection Using mm-Wave Radar,” IEEE Sensors Letters, vol. 2, no. 3, Sep. 2018.
    [11] B. R. Jean, E. C. Green, and M. J. McClung, “A microwave frequency sensor for non-invasive blood-glucose measurement,” IEEE Sensors Applications Symposium, Atlanta, GA, Feb. 12-14, 2008.
    [12] Omkar, W. Yu, and S. Y. Huang, “T-shaped patterned microstrip line for non-invasive continuous glucose sensing,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 10, pp. 942–944, Oct. 2018.
    [13] V. Turgul and I. Kale, “A novel pressure sensing circuit for non-invasive RF/microwave blood glucose sensors,” in Proc. IEEE Medit. Microw. Symp. (MMS), Abu Dhabi, United Arab Emirates, pp. 1–4, Nov. 14-16, 2016.
    [14] V. Turgul and I. Kale, “Influence of fingerprints and finger positioning on accuracy of RF blood glucose measurement from fingertips,” Electron. Lett., vol. 53, no. 4, pp. 218–220, Feb. 2017.
    [15] V. Turgul, and I. Kale, “Simulating the Effects of Skin Thickness and Fingerprints to Highlight Problems With Non-Invasive RF Blood Glucose Sensing From Fingertips,” IEEE Sensors J., vol. 17, no. 22, 15 Nov. 2017.
    [16] H. Choi, J. Naylon, S. Luzio, J. Beutler, and A. Porch, “Design of continuous non-invasive blood glucose monitoring sensor based on a microwave split ring resonator,” in RF Wireless Technol. Biomed. Healthcare Appl./IEEE MTT-S Int. Microw. Workshop Series, London, U.K., pp. 1–3, Dec. 8–10, 2014.
    [17] H. Choi, J. Naylon, S. Luzio, J. Beutler, J. Birchall, C. Martin, and A. Porch, "Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, Oct. 2015.
    [18] P. Momenroodaki, W. Haines, M. Fromandi, and Z. Popovic, “Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry,” IEEE Trans. Microw. Theory Techn., pp. 2535 – 2545, 12 Dec. 2017.
    [19] Tektronix, 全球頻譜分配情況海報, [online], https://tw.tek.com/
    [20] Baena, J.D.; Bonache, J.; Martín, F.; Sillero, R. M.; Falcone, F.; Lopetegi, T.; Laso, M. A. G.; García-García, J.; Gil, I.; Portillo, M. F. & Sorolla, M. “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines”, IEEE Trans. Microw. Theory Techn., vol. 53, pp. 1451-1461, Apr. 2005.
    [21] Aznar, F., M. Gil, G. Siso, J. Bonache, and F. Martin, “SRR- and CSRR-based metamaterial transmission lines: Modeling and comparison,” Proceeding of 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 49–52, Guadalajara, Mexico, Apr. 2009.
    [22] M. S. Boybay and O. M. Ramahi, “Material Characterization Using Complementary Split-Ring Resonators,” IEEE Trans. Instrum. Meas., vol. 61, no. 11, pp. 3039–3046, Nov. 2012.
    [23] S. Eggermont, R. Platteborze, and I. Huynen, “Investigation of metamaterial leaky wave antenna based on complementary split ring resonators,” in Proc. Eur. Microw. Conf., Rome, Italy, Sep. 2009, pp. 209–212.
    [24] Dielectric Properties of Body Tissues in the frequency range 10 Hz - 100 GHz, [online], http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
    [25] C.-H. Tseng and C.-H. Wu, “Design of compact branch-line couplers using π-equivalent artificial transmission lines,” IET Microw. Ant. Prop., vol. 6, no. 9, pp. 969–974, 2012.
    [26] Infineon, BFP405F data sheet, [online], https://www.infineon.com/
    [27] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,”Proc. IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
    [28] C.-H. Tseng and C.-L. Chang, “Design of low phase-noise microwave oscillator and wideband VCO based on microstrip combline bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3151- 3160, Oct. 2012.
    [29] H.-C. Chang, “Stability analysis of self-injection-locked oscillators,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 9, pp. 1989–1993, Sep. 2003.

    無法下載圖示 全文公開日期 2024/07/10 (校內網路)
    全文公開日期 2024/07/10 (校外網路)
    全文公開日期 2024/07/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE